Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13215-13226    https://doi.org/10.11896/cldb.19080093
  高分子与聚合物基复合材料 |
共价有机骨架材料的合成及应用
张关印1, 关清卿1, 庙荣荣1, 宁平1, 何亮2,*
1 昆明理工大学环境科学与工程学院,昆明 650500
2 昆明理工大学化学工程学院,昆明 650500
Synthesis and Application of Covalent Organic Frameworks
ZHANG Guanyin1, GUAN Qingqing1, MIAO Rongrong1, NING Ping1, HE Liang2,*
1 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 8271KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 共价有机骨架材料(Covalent organic frameworks,COFs)是有机单体通过可逆共价键连接形成的晶型有机多孔材料。自2005年首例COFs报道以来,大量新型COFs应运而生。COFs具有质量轻、密度低、结构规整、孔道结构可调、比表面积大、化学稳定性高的优势,在生命科学、环境保护和能源化工等方向具有巨大的应用潜力。由于功能化的COFs易实现不同物质在其内部的传输,目前研究人员已经成功将大量COFs应用于气体的吸附和分离与存储、催化剂、药物传递、有机电子器件和选择性分离薄膜等领域并取得了丰硕的研究成果。大量研究表明,COFs是高效存储CO2、H2和CH4的多孔材料,并且也可以作为催化剂载体,甚至可以直接作为催化剂用于催化各种化学反应。COFs的水分散度高且不会对细胞产生毒性,对布洛芬、5-氟尿嘧啶和槲皮素等药物表现出高效的负载和释放性能。2D COFs的π阵列型结构孔道高度规整,容易形成良好的载流子传导路径,可作为半导体元器件、超级电容器和质子交换膜等有机电子器件的理想候选材料。由于其高度有序且稳定的纳米孔道结构特性,2D COFs还可作为性能良好的纳滤薄膜,以高效分离溶剂中的染料分子。本文总结了COFs的各种特性并概述了COFs的结构设计、功能化和合成方法,综述了COFs在气体吸附与存储、催化剂、药物传递、有机电子器件和选择性分子筛薄膜领域的应用进展,并对其发展的新趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张关印
关清卿
庙荣荣
宁平
何亮
关键词:  共价有机骨架  结构设计  功能化    
Abstract: Covalent organic frameworks (COFs) are crystalline organic porous materials, which are constructed with organic building blocks through reversible covalent bonds. Since the first case of COFs was reported in 2005, a large number of new COFs have emerged. COFs have the advantages of light weight, low density, regular structure, adjustable pore structure, high specific surface area, and high chemical stability, which have great application potential in life science, environmental protection and energy chemical industries. Owning to functional COFs facilitate the transportation of different substances within them, researchers have successfully applied them to many fields, such as gas adsorption and storage, catalysis, drug delivery, organic electronic devices, and selective separation membrane, etc., and achieved fruitful research results. Many reports indicate that COFs are highly-efficient porous materials for storing CO2, H2 and CH4. Further, COFs can be also used as catalyst support or be as catalysts directly to imporve many chemical reactions. COFs have good water dispersibility, no toxicity to cells, and show high loading and release capacities for ibuprofen, 5-fluorouracil and quercetin, etc. The highly regular π-array pores of 2D COFs are easy to form good carrier conduction paths, which make them have great potential to be the ideal candidates for semiconductor devices, supercapacitors and proton exchange membrane materials. Owning to their highly-ordered and stable nanopores, 2D COFs also can be used as nanofiltration membranes for efficient separation of dye molecules in solvents. In this work, the characteristics of COFs are summarized, and the structural design, functionalization and synthesis methods of COFs are also described in detail. Finally, the applications of COFs in gas adsorption and storage, catalysis, drug delivery, organic electronic devices and selective separation membrane are reviewed. The development trend of COFs are also prospected.
Key words:  covalent organic frameworks    structural design    functionalization
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TB34  
基金资助: 国家自然科学基金项目(21767015);国家重点研发计划(2018YFC1902105)
作者简介:  张关印,2017年6月毕业于昆明理工大学,获得工学学士学位。现为昆明理工大学环境科学与工程学院硕士研究生,在关清清教授、何亮副教授的指导下进行研究。目前主要研究领域为共价有机骨架材料的合成及其催化应用。何亮,昆明理工大学化学工程学院副教授,硕士研究生导师。2007—2014年,本科、硕士就读于天津科技大学轻化工程专业;2017年,博士毕业于华南理工大学制浆造纸工程专业;同年7月就职于昆明理工大学,获得云南省“高层次人才引进计划”青年人才称号。近年来在生物质化工与材料、烟草与卷烟新材料、造纸过程监测与环境保护等方面开展研究,在 ACS Catal.J. Catal.Anal. Chem.Cellulose等国际权威期刊上发表论文30余篇,授权国家发明专利4项。受邀担任 CelluloseBioresource Technol.等多个国际权威期刊的审稿人。
引用本文:    
张关印, 关清卿, 庙荣荣, 宁平, 何亮. 共价有机骨架材料的合成及应用[J]. 材料导报, 2021, 35(13): 13215-13226.
ZHANG Guanyin, GUAN Qingqing, MIAO Rongrong, NING Ping, HE Liang. Synthesis and Application of Covalent Organic Frameworks. Materials Reports, 2021, 35(13): 13215-13226.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080093  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13215
1 Li J R, Kuppler R J, Zhou H C. Chemical Society Reviews,2009,38(5),1477.
2 Choi K M, Jeong H M, Park J H, et al. ACS Nano,2014,8(7),7451.
3 Cote A P, Benin A I, Ockwig N W, et al. Science,2005,310(5751),1166.
4 Kuhn P A, Thomas A M. Angewandte Chemie,2008,47(18),3450.
5 Feng X, Ding X, Jiang D. Chemical Society Reviews,2012,41(18),6010.
6 Uribe-Romo F J, Hunt J R, Furukawa H, et al. Journal of the American Chemical Society,2009,131(13),4570.
7 Uribe-Romo F J, Doonan C J, Furukawa H, et al. Journal of the American Chemical Society,2011,133(30),11478.
8 Kandambeth S, Mallick A, Lukose B, et al. Journal of the American Chemical Society,2012,134(48),19524.
9 Fang Q, Qiu S, Yan Y, et al. Nature communications,2014,5,4503.
10 Ding X S, Guo J, Feng X, et al. Angewandte Chemie,2011,123(6),1325.
11 Feng X, Liu L, Honsho Y, et al. Angewandte Chemie ,2012,51(11),2618.
12 Li Y, Yang R T. AIChE Journal,2008,54(1),269.
13 Lanni L M, Tilford R W, Bharathy M, et al. Journal of the American Chemical Society,2011,133(35),13975.
14 El-Kaderi H M, Hunt J R, Mendoza-Cortes J L, et al. Science,2007,316(5822),268.
15 Spitler E L, Koo B T, Novotney J L, et al. Journal of the American Che-mical Society,2011,133(48),19416.
16 Baldwin L A, Crowe J W, Pyles D A, et al. Journal of the American Chemical Society,2016,138(46),15134.
17 Xu H, Gao J, Jiang D. Nature chemistry,2015,7(11),905.
18 Du Y, Yang H, Whiteley J M, et al. Angewandte Chemie,2016,128(5),1769.
19 Wan S, Gándara F, Asano A, et al. Chemistry of Materials,2011,23(18),4094.
20 Lin G, Ding H, Chen R, et al. Journal of the American Chemical Society,2017,139(25),8705.
21 Ding S, Wang W. Chemical Society Reviews,2013,42(2),548.
22 Ding S, Gao J, Wang Q, et al. Journal of the American Chemical Society,2011,133(49),19816.
23 Pachfule P, Kandambeth S, Díaz D, et al. Chemical Communications,2014,50(24),3169.
24 Wang X, Han X, Zhang J, et al. Journal of the American Chemical Society,2016,138(38),12332.
25 Peng Y W, Hu Z G, Gao Y J, et al. ChemSusChem,2015,8(19),3208.
26 Wan S, Guo J, Kim J, et al. Angewandte Chemie,2009,48(30),5439.
27 Wan S, Guo J, Kim J, et al. Angewandte Chemie,2008,120(46),8958.
28 Zhang W, Zhang L, Zhao H, et al. Journal of Materials Chemistry A,2018,6,13331.
29 Feng X, Chen L, Dong Y, et al. Chemical Communications,2011,47(7),1979.
30 José L S, María J M, Félix Z. Chemical Society Reviews,2016,45,5635.
31 Smith B J, Overholts A C, Hwang N, et al. Chemical Communications,2016,52(18),3690.
32 Lin G, Ding H, Yuan D, et al. Journal of the American Chemical Society,2016,138(10),3302.
33 Zhang W, Li C, Yuan Y P, et al. Journal of Materials Chemistry,2010,20(31),6413.
34 Guan X, Ma Y, Li H, et al. Journal of the American Chemical Society,2018,140(13),4494.
35 Campbell N L, Clowes R, Ritchie L K, et al. Chemistry of Materials,2009,21(2),204.
36 Ren S, Bojdys M J, Dawson R, et al. Advanced Materials,2012,24(17),2357.
37 Biswal B P, Chandra S, Kandambeth S, et al. Journal of the American Chemical Society,2013,135(14),5328.
38 Karak S, Kandambeth S, Biswal B P, et al. Journal of the American Chemical Society,2017,139(5),1856.
39 Medina D D, Rotter J M, Hu Y, et al. Journal of the American Chemical Society,2015,137(3),1016.
40 Zwaneveld N A A, Pawlak R, Abel M, et al. Journal of the American Chemical Society,2008,130(21),6678.
41 Furukawa H, Yaghi O M. Journal of the American Chemical Society,2009,131(25),8875.
42 Dey S, Bhunia A, Esquivel M D, et al. Journal of Materials Chemistry A,2016,4(17),6259.
43 Zhao Y, Yao K X, Teng B, et al. Energy & Environmental Science,2013,6(12),3684.
44 Wang K, Huang H, Liu D, et al. Environmental Science & Technology,2016,50(9),4869.
45 Ma Y, Li Z, Wei L, et al. Journal of the American Chemical Society,2017,139(14),4995.
46 Cao D, Lan J, Wang W, et al. Angewandte Chemie,2010,48(26),4730.
47 Kalidindi S B, Oh H, Hirscher M, et al. Chemistry-A European Journal,2012,18(35),10848.
48 Neti V S P K, Wu X, Deng S, et al. CrystEngComm,2013,15(35),6892.
49 Zeng Y, Zou R, Zhao Y. Advanced Materials,2016,28(15),2855.
50 Mendoza-Cortes J L, Pascal T A, Goddard W A. The Journal of Physical Chemistry A,2011,115(47),13852.
51 Pachfule P, Panda M K, Kandambeth S, et al. Journal of Materials Chemistry A,2014,2(21),7944.
52 Lu S, Hu Y, Wan S, et al. Journal of the American Chemical Society,2017,139(47),17082.
53 Wu Y, Xu H, Chen X, et al. Chemical Communications,2015,51(50),10096.
54 Fang Q, Gu S, Zheng J, et al. Angewandte Chemie,2014,126(11),2922.
55 Fang Q, Wang J, Gu S, et al. Journal of the American Chemical Society,2015,137(26),8352.
56 Bai L, Phua S Z, Lim W Q, et al. Chemical Communications,2016,52(22),4128.
57 Vyas V S, Vishwakarma M, Moudrakovski I, et al. Advanced Materials,2016,28(39),8749.
58 Mitra S, Sasmal H S, Kundu T, et al. Journal of the American Chemical Society,2017,139(12),4513.
59 Deblase C R, Kenneth H B, et al. ACS Nano,2015,9(3),3178.
60 Wang S, Wang Q, Shao P, et al. Journal of the American Chemical Society,2017,139(12),4258.
61 Sun B, Zhu C H, Liu Y, et al. Chemistry of Materials,2017,29(10),4367.
62 Sasmal H S, Aiyappa H B, Bhange S N, et al. Angewandte Chemie,2018,57(34),10894.
63 Fan H, Gu J, Meng H, et al. Angewandte Chemie,2018,57(15),4083.
64 Kandambeth S, Biswal B P, Chaudhari H D, et al. Advanced Materials,2017,29(2),1603945.
[1] 吕博, 陈连喜. 磷酸基功能化二氧化硅材料的制备、性能和应用[J]. 材料导报, 2021, 35(Z1): 143-150.
[2] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[3] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[4] 徐群娜, 白忠薛, 马建中. 玉米醇溶蛋白的化学改性及应用研究进展[J]. 材料导报, 2021, 35(3): 3194-3203.
[5] 张庆, 刘呈坤, 毛雪, 吴月霞, 江志威, 赵丽, 洪洁. 压电纳米发电机材料选用和结构设计研究进展[J]. 材料导报, 2021, 35(11): 11066-11076.
[6] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[7] 王学凯, 王金淑, 杜玉成, 吴俊书, 腾威利, 车海冰, 靳翠鑫. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 3017-3027.
[8] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[9] 武伟, 董季玲, 张锦山, 范海兵, 尹坚, 刘洋, 丁皓, 曹鹏军. 功能化磁性纳米颗粒吸附废水中重金属的研究进展[J]. 材料导报, 2020, 34(17): 17124-17131.
[10] 余慧丽, 杭祖圣, 怀旭, 黄玉安, 张春祥, 张金泉. 基于催化活性提升的g-C3N4的表面活化、敏化及功能化研究进展[J]. 材料导报, 2020, 34(11): 11121-11128.
[11] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[12] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[13] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[14] 董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
[15] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed