Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13227-13231    https://doi.org/10.11896/cldb.20050023
  高分子与聚合物基复合材料 |
纳米颗粒稳定乳状液提高原油采收率研究进展
裴海华1,2,*, 单景玲1,2, 曹旭1,2, 张贵才1,2, 蒋平1,2
1 中国石油大学(华东)石油工程学院,青岛 266580
2 非常规油气开发教育部重点实验室(中国石油大学(华东)),青岛 266580
Research Progresses on Nanoparticle-stabilized Emulsions for Enhanced Oil Recovery
PEI Haihua1,2,*, SHAN Jingling1,2, CAO Xu1,2, ZHANG Guicai1,2, JIANG Ping1,2
1 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
2 Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
下载:  全 文 ( PDF ) ( 2417KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米颗粒稳定乳状液具有高稳定性和高黏度等独特性质,因而在提高采收率领域比传统表面活性剂稳定乳状液体系更具应用潜力。通过调研近年来国内外文献,概述了纳米颗粒稳定乳状液的作用机理,包括空间位阻稳定机理和颗粒架桥稳定机理;总结了纳米颗粒稳定乳状液的主要影响因素,包括纳米颗粒的性质如润湿性、粒径、浓度和形状各向异性,水相的性质如pH值和矿化度,以及油相的性质;详细阐述了纳米颗粒稳定乳状液在提高原油采收率领域的最新研究进展,分析表明纳米颗粒不仅大幅度提高了乳状液的稳定性,而且增强了乳状液的流度控制能力,另外还能与表面活性剂、聚合物协同作用,能够满足高温、高盐油藏提高采收率的需求,最后指出了纳米颗粒稳定乳状液提高原油采收率存在的问题与发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴海华
单景玲
曹旭
张贵才
蒋平
关键词:  纳米颗粒  乳状液  稳定性  流度控制  提高采收率    
Abstract: Nanoparticle-stabilized emulsion, owing to its unique properties of high stability, large viscosity and so on, has more significant potential in enhancing oil recovery compared with the classical emulsion stabilized by surfactants. The present review gives a description of the stabilization mechanism of emulsion by nanoparticles, including steric barrier stabilization and particle bridging stabilization, and also an analytical discussion on the factors affecting the stability of nanoparticle-stabilized emulsion from the aspects of nanoparticle properties (such as wettability, size, concentration and shape anisotropy), water phase properties (such as pH and salinity), and oil phase properties. A summary of the recent researches involving the application of nanoparticle-stabilized emulsion to oil recovery then demonstrates that nanoparticles can improve the stability and also facilitate the mobility control of emulsion, as well as interact synergistically with surfactant and polymer, making this new technology applicable and adequate for high temperature and high salinity reservoir. The paper ends with a critical and prospective outline on the existent problems and future prospect.
Key words:  nanoparticles    emulsion    stability    mobility control    enhanced oil recovery
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TE357  
基金资助: 国家重点研发计划(2018YFA0702400);国家自然科学基金(51574266);山东省自然科学基金(ZR2019MEE085);中央高校基本科研业务费专项资金(18CX02096A)
作者简介:  裴海华,中国石油大学(华东)石油工程学院副教授,硕士研究生导师。研究方向为提高采收率与采油化学。2007年7月本科毕业于中国石油大学(华东)石油工程学院,2013年7月在中国石油大学(华东)油气田开发工程专业取得博士学位,2013—2015年在中国石油大学(华东)材料科学与工程博士后流动站从事研究工作。主要从事纳米材料提高原油采收率的研究工作。近年来,在纳米材料提高原油采收率领域发表论文20余篇,包括Fuel、Energy & Fuels、Ind Eng Chem Res、Colloids and Surfaces A和J Petrol Sci Engs等。
引用本文:    
裴海华, 单景玲, 曹旭, 张贵才, 蒋平. 纳米颗粒稳定乳状液提高原油采收率研究进展[J]. 材料导报, 2021, 35(13): 13227-13231.
PEI Haihua, SHAN Jingling, CAO Xu, ZHANG Guicai, JIANG Ping. Research Progresses on Nanoparticle-stabilized Emulsions for Enhanced Oil Recovery. Materials Reports, 2021, 35(13): 13227-13231.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050023  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13227
1 Karambeigi M S, Abbassi R, Roayaei E, et al. Journal of Industrial and Engineering Chemistry,2015,29,382.
2 Tian Maozhang, Song Xinmin, Ma Desheng, et al. Journal of Dispersion Science and Technology,2016,37(5),706.
3 Demikhova I I, Likhanova N V, Moctezuma A E, et al. In: SPE Russian Oil and Gas Exploration & Production Technical Conference and Exhibition. Moscow,2014,pp. 1.
4 ShamsiJazeyi H, Miller C A, Wong M S, et al. Journal of Applied Polymer Science,2014,131(15),40576.
5 Chegenizadeh N, Saeedi A, Xie Q. Petroleum,2016,2(4),324.
6 Peng B, Zhang L, Luo J, et al. RSC Advances,2017,7(51),32246.
7 Arab D, Kantzas A, Bryant S L. Journal of Petroleum Science and Engineering,2018,163,217.
8 Son H A, Yoon K Y, Lee G J, et al. Journal of Petroleum Science and Engineering,2015,126,152.
9 Binks B P. Current Opinion in Colloid & Interface Science,2002,7(1),21.
10 Yi C L, Yang Y Q, Jiang J Q, et al. Progress in Chemistry,2011,23(1),65(in Chinese).
易成林,杨逸群,江金强,等.化学进展,2011,23(1),65.
11 Binks B P, Lumsdon S O. Langmuir,2000,16(23),8622.
12 Zhou J, Qiao X Y, Sun K. Chemistry,2012,75(2),99(in Chinese).
周君,乔秀颖,孙康.化学通报,2012,75(2),99.
13 Chevalier Y, Bolzinger M A. Colloids and Surfaces A Physicochemical and Engineering Aspects,2013,439(2),23.
14 Miller R, Fainerman V B, Kovalchuk V I, et al. Advances in Colloid and Interface Science,2006,128,17.
15 Tambe D E, Sharma M M. Advances in Colloid & Interface Science,1994,52,1.
16 Binks B P, Kirkland M. Physical Chemistry Chemical Physics,2002,4(15),3727.
17 Horozov T S, Binks B P. Angewandte Chemie International Edition,2006,45(5),773.
18 Dickinson E. Current Opinion in Colloid & Interface Science,2010,15(1-2),40.
19 Midmore B R. Colloids & Surfaces A Physicochemical & Engineering Aspects,1998,132(2-3),257.
20 Vignati E, Piazza R, Lockhart T P. Langmuir,2003,19(17),6650.
21 Ballard N, Bon S A F. Journal of Colloid and Interface Science,2015,448,533.
22 Garbin V, Crocker J C, Stebe K J. Journal of Colloid and Interface Science,2012,387(1),1.
23 Danov K D, Kralchevsky P A. Advances in Colloid and Interface Science,2010,154(1-2),91.
24 Aizenberg J, Braun P V, Wiltzius P. Physical Review Letters,2000,84(13),2997.
25 Binks B P, Liu W, Rodrigues J A. Langmuir,2008,24(9),4443.
26 Horozov T S, Binks B P, Gottschalk-Gaudig T. Physical Chemistry Che-mical Physics,2007,9(48),6398.
27 Melle S, Lask M, Fuller G G. Langmuir,2005,21(6),2158.
28 Kim I, Worthen A J, Johnston K P, et al. Journal of Nanoparticle Research,2016,18(4),82.
29 Binks B P, Whitby C P. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,253(1-3),105.
30 Binks B P, Philip J, Rodrigues J A. Langmuir,2005,21(8),3296.
31 Zhang T, Davidson D, Bryant S L, et al. In: SPE Improved Oil Recovery Symposium. Tulsa,2010,pp. 1.
32 Madivala B, Vandebril S, Fransaer J, et al. Soft Matter,2009,5(8),1717.
33 Binks B P, Rodrigues J A, Frith W J. Langmuir,2007,23(7),3626.
34 Kim I, Worthen A J, Lotfollahi M, et al. In: IOR 2017-19th European Symposium on Improved Oil Recovery. Tulsa,2017,pp. 1.
35 Yang F, Liu S, Xu J, et al. J Colloid Interface Sci.,2006,302(1),159.
36 Ashby N P, Binks B P. Physical Chemistry Chemical Physics,2000,2(24),5640.
37 Binks B P, Lumsdon S O. Physical Chemistry Chemical Physics,2000,2(13),2959.
38 Liao G Z, Wang Q, Wang H Z, et al. Acta Petrolei Sinica,2017,38(2),196(in Chinese).
廖广志,王强,王红庄,等.石油学报,2017,38(2),196.
39 Zhu Y Y, Hou Q F, Jian G Q, et al. Petroleum Exploration and Development,2013,40(1),90(in Chinese).
朱友益,侯庆锋,简国庆,等.石油勘探与开发,2013,40(1),90.
40 Cheng J C, Wu J Z, Hu J Q. Acta Petrolei Sinica,2014,35(2),310(in Chinese).
程杰成,吴军政,胡俊卿.石油学报,2014,35(2),310.
41 Shi S, Wang Y, Wang L, et al. Journal of Dispersion Science and Technology,2015,36(5),660.
42 Bragg J R, Kaminsky R D, Leonardi S A. U.S. patent, US20090211758,2012.
43 Teletzke G F, Wattenbarger R C, Wilkinson J R. SPE Reservoir Evaluation & Engineering,2010,13(1),143.
44 Villamizar L C, Lohateeraparp P, Harwell J H, et al. In: SPE Improved Oil Recovery Symposium. Tulsa,2010,pp. 1.
45 Zhang T, Davidson D, Bryant S L, et al. In: SPE Improved Oil Recovery Symposium. Tulsa,2010,pp. 1.
46 Griffith N, Ahmad Y, Daigle H, et al. In: SPE Improved Oil Recovery Conference. Tulsa,2016,pp. 1.
47 Son H, Kim H, Lee G, et al. Korean Journal of Chemical Engineering,2014,31(2),338.
48 Binks B P, Rodrigues J A. Langmuir,2007,23(14),7436.
49 Kawazoe A, Kawaguchi M. Colloids & Surfaces A Physicochemical & Engineering Aspects,2011,392(1),283.
50 Moghadam T F, Azizian S. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,457,333.
51 Binks B P, Desforges A, Duff D G. Langmuir,2007,23(3),1098.
52 Xu K, Zhu P, Colon T, et al. SPE Journal,2017,22(2),459.
53 Maurya N K, Mandal A. Chemical Engineering Research & Design,2018,132,370.
54 Kim I, Worthen A J, Lotfollahi M, et al. In: IOR 2017-19th European Symposium on Improved Oil Recovery. Tulsa,2017,pp. 1.
55 Qiu F, Mamora D D. In: Canadian Unconventional Resources and International Petroleum Conference. Tulsa,2010,pp. 1.
56 Pei H, Zhang G, Ge J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2015,484,478.
57 Pei H, Shu Z, Zhang G, et al. Journal of Petroleum Science and Engineering,2018,163,476.
58 Sharma T, Kumar G S, Sangwai J S. Journal of Petroleum Science and Engineering,2015,129,221.
59 Sharma T, Velmurugan N, Patel P, et al. Petroleum Science and Techno-logy,2015,33(17-18),1595.
60 Sharma T, Kumar G S, Chon B H, et al. Journal of Industrial and Engineering Chemistry,2015,22,324.
61 Yousefvand H A, Jafari A. Journal of Petroleum Science and Enginee-ring,2018,162,283.
[1] 邬欣, 曾利胜, 王剑龙, 李建. 无机纳米颗粒在癌症治疗中的研究进展[J]. 材料导报, 2021, 35(Z1): 87-93.
[2] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[3] 罗遥凌, 高育欣, 闫欣宜, 谢昱昊, 毕耀. 热养护UHPC后期水稳定性[J]. 材料导报, 2021, 35(Z1): 242-246.
[4] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[5] 赵晨, 毕常芬, 郑宝鑫, 侯文彬, 李祎亮. 金纳米颗粒应用于肿瘤显像和治疗的研究进展[J]. 材料导报, 2021, 35(Z1): 322-327.
[6] 吴国玉, 郑晔, 王明涌, 邢志军. 化学还原法制备高分散纳米铂粒子[J]. 材料导报, 2021, 35(Z1): 406-410.
[7] 郭翠霞, 吴张永, 王航, 朱启晨, 邹应辉. 乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性[J]. 材料导报, 2021, 35(8): 8028-8033.
[8] 张鹤, 张会丰, 郑婷婷, 赵富春, 廖双泉. 月桂酸铵对浓缩天然胶乳贮存稳定性及硫化胶性能的影响[J]. 材料导报, 2021, 35(8): 8184-8190.
[9] 姚子成, 肖方锟, 刘兆峰, 张大鹏, 朱桂茹. 石墨炭纳米颗粒改性聚砜支撑层制备正渗透复合膜[J]. 材料导报, 2021, 35(8): 8196-8200.
[10] 谭聪, 刘洋, 何莹, 李洋, 李博文, 仇浩. 不同粒径金属基纳米颗粒的性质与其环境行为和生物效应的关系[J]. 材料导报, 2021, 35(7): 7121-7126.
[11] 朱菲, 吴祖洁, 程明辉, 管金华, 邹龙. 金属纳米颗粒的生物合成研究进展[J]. 材料导报, 2021, 35(7): 7127-7138.
[12] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[13] 李秀英, 肖卓豪, 陶歆月, 汪永清, 杨柯, 石纪军, 邓波. 高水平放射性废物固化用磷酸盐玻璃的研究进展[J]. 材料导报, 2021, 35(5): 5032-5039.
[14] 曹诗瑶, 闫小琴. GaAs材料在光电化学电池中的稳定性[J]. 材料导报, 2021, 35(5): 5062-5066.
[15] 李木兰, 张亮, 姜楠, 孙磊, 熊明月. 纳米颗粒对无铅钎料改性的研究进展[J]. 材料导报, 2021, 35(5): 5130-5139.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed