Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5062-5066    https://doi.org/10.11896/cldb.20020107
  无机非金属及其复合材料 |
GaAs材料在光电化学电池中的稳定性
曹诗瑶, 闫小琴
北京科技大学材料科学与工程学院,北京 100083
The Stability of GaAs in Photoelectrochemical Cells
CAO Shiyao, YAN Xiaoqin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 2244KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光电化学水分解制氢被誉为人工光合作用,其利用太阳能将水分解为氢气和氧气,是未来可持续能源体系潜在的重要能源转换手段。随着光电化学电池的发展,光电化学电池的转换效率得到了大幅提升,然而光电化学电池的使用寿命却与实际应用标准寿命(10年)相差甚远。
光电化学电池材料体系中Ⅲ-Ⅴ族半导体GaAs由于其优异的光物理性能逐步受到科学家们的广泛关注。然而,GaAs在光电化学体系中存在严重的光腐蚀问题。如何在充分发挥GaAs本征优势的前提下提升其在电解液中的稳定性近年来已成为Ⅲ-Ⅴ族半导体研究的热点。研究表明,针对不同环境下GaAs电极的腐蚀机制设计不同保护层薄膜对GaAs进行防护,能有效地在保证转换效率的前提下延长GaAs电极的寿命。
本文从GaAs材料在不同酸碱性电解液中的腐蚀机理出发,针对GaAs在不同溶液环境中的有效保护措施进行综述,着重阐述了现有手段对GaAs材料在溶液中稳定性提升的成果,同时展望了GaAs材料的未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹诗瑶
闫小琴
关键词:  GaAs  光腐蚀  稳定性  保护层  光电化学水分解    
Abstract: Photoelectrochemical water splitting is renowned as artificial photosynthesis. It converts solar energy and splits water into hydrogen and oxygen. It is a potentially important energy conversion method for future sustainable energy systems. With the development of photoelectroche-mical cells, the energy conversion efficiency improved greatly. However, the lifetime of the photoelectrochemical cell is far from the actual application standard of 10 years.
The excellent photo-physical properties have brought the Ⅲ-Ⅴ semiconductor GaAs under the spotlight. However, GaAs suffers from serious photocorrosion in photoelectrochemical systems. How to improve its stability in electrolyte under the premise of giving full play to its inherent advantages has become a research hotspot of Ⅲ-Ⅴ semiconductors in recent years. Studies have shown that designing different protective films to protect GaAs according to the corrosion mechanism of GaAs electrodes in different environments can effectively extend the lifetime of GaAs electrodes while ensuring conversion efficiency.
This article starts from the corrosion mechanism of GaAs materials in different acid and alkaline electrolytes, and summarizes the effective protection measures of GaAs in different solution environments. This review focuses on the results of existing methods for improving the stability of GaAs materials in solution. Moreover, the future development of GaAs in photoelectrochemical field is prospected.
Key words:  GaAs    photocorrosion    stability    protection layer    photoelectrochemical water splitting
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TB303  
通讯作者:  xqyan@mater.ustb.edu.cn   
作者简介:  闫小琴教授,博士研究生导师。2004年获得中科院物理所理学博士学位,2004—2007年在日本东北大学金属材料研究所做博士后研究,2005年4月获得日本学术振兴会外国人特别研究员奖。2007年以422优秀人才被引进,在北京科技大学材料科学与工程学院工作,2008年入选北京市科技新星计划,2009年获得教育部新世纪优秀人才计划支持。参加国家重大科学研究计划项目、国家科技部和基金委重点项目、重大国际合作项目及自然基金项目多项。负责国家基金委面上项目、教育部项目等6项。主要研究方向为纳米功能材料及能量转换器件,纳米材料的图案化生长,新材料的拉曼光谱等。在国内外重要学术期刊上发表多篇SCI文章,包括Science、Advanced Materials、Phys. Rev. Lett.、Nano Lett.等期刊论文。
曹诗瑶博士,2020年毕业于北京科技大学材料科学与工程学院并获得工学博士学位,目前主要研究领域专注于一维纳米材料的制造和光电化学水分解。参加国家重大科学研究计划项目、国家科技部和基金委重点项目、重大国际合作项目及自然基金项目多项。负责国家基金委面上项目、教育部项目等6项。主要研究方向为纳米功能材料及能量转换器件,纳米材料的图案化生长,新材料的拉曼光谱等。在国内外重要学术期刊上发表多篇SCI文章,包括Science、Advanced Materials、Phys. Rev. Lett.、Nano Lett.等期刊论文。
曹诗瑶博士,2020年毕业于北京科技大学材料科学与工程学院并获得工学博士学位,目前主要研究领域专注于一维纳米材料的制造和光电化学水分解。
引用本文:    
曹诗瑶, 闫小琴. GaAs材料在光电化学电池中的稳定性[J]. 材料导报, 2021, 35(5): 5062-5066.
CAO Shiyao, YAN Xiaoqin. The Stability of GaAs in Photoelectrochemical Cells. Materials Reports, 2021, 35(5): 5062-5066.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020107  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5062
1 Veziroglu T N. International Journal of Hydrogen Energy,1998,23,1077.
2 Fujishima A, Kohayakawa K, Honda K. Journal of the Electrochemical Society,1975,122,1487.
3 Fujishima A, Honda K. Nature,1972,238,37.
4 Qiu Y, Leung S-F, Zhang Q, et al. Nano Letters,2014,14,2123.
5 Lin Y, Xu Y, Mayer M T, et al. Journal of the American Chemical Society,2012,134,5508.
6 Mayer M T, Du C, Wang D. Journal of the American Chemical Society,2012,134,12406.
7 Hwang Y J, Boukai A, Yang P. Nano Letters,2008,9,410.
8 Cui X, Ma M, Zhang W, et al. Electrochemistry Communications,2008,10,367.
9 Park J H, Kim S, Bard A J. Nano Letters,2006,6,24.
10 Mor G K, Varghese O K, Wilke R H, et al. Nano Letters,2008,8,1906.
11 Ni M, Leung M K, Leung D Y, et al. Renewable and Sustainable Energy Reviews,2007,11,401.
12 Barroso M, Cowan A J, Pendlebury S R, et al. Journal of the American Chemical Society,2011,133,14868.
13 Wang X, Peng K Q, Hu Y, et al. Nano Letters,2013,14,18.
14 Wolcott A, Kuykendall T R, Chen W, et al. The Journal of Physical Chemistry B,2006,110,25288.
15 Su J, Feng X, Sloppy J D, et al. Nano Letters,2011,11,203.
16 Gao L, Cui Y, Wang J, et al. Nano Letters,2014,14,3715.
17 Wang P, Huang B, Dai Y, et al. Physical Chemistry Chemical Physics,2012,14,9813.
18 Lee M H, Takei K, Zhang J, et al. Angewandte Chemie International Edition,2012,51,10760.
19 Pinaud B A, Benck J D, Seitz L C, et al. Energy & Environmental Science,2013,6,1983.
20 Jiang C, Moniz S J A, Wang A, et al. Chemical Society Reviews,2017,46,4645.
21 Jin J, Walczak K, Singh M R, et al. Energy & Environmental Science,2014,7,3371.
22 Seger B, Castelli I E, Vesborg P C, et al. Energy & Environmental Science,2014,7,2397.
23 Bae D, Seger B, Vesborg P C, et al. Chemical Society Reviews,2017,46,1933.
24 Tromans D, Liu G G, Weinberg F. Corrosion Science,1993,35,117.
25 Allongue P, Blonkowski S. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1991,317,77.
26 Gerischer H, Mindt W. Electrochimica Acta,1968,13,1329.
27 Frese Jr K, Madou M, Morrison S R. The Journal of Physical Chemistry,1980,84,3172.
28 Collins M, Ratcliffe C, Ripmeester J. Journal of Physical Chemistry,1990,94,157.
29 Vanmaekelbergh D, Hoogendam C, Kelly J. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1989,270,175.
30 Gerischer H, Lübke M. Berichte der Bunsengesellschaft für physikalische Chemie,1983,87,123.
31 Gerischer H, Lübke M. Journal of the Electrochemical Society,1988,135,2782.
32 Allongue P, Cachet H. Journal of the Electrochemical Society,1984,131,2861.
33 Allongue P, Cachet H. Electrochimica Acta,1988,33,79.
34 Young J L, Steirer K X, Dzara M J, et al. Journal of Materials Chemistry A,2016,4,2831.
35 Huang Y, Luo J, Ivey D G. Materials Chemistry and Physics,2005,93,429.
36 Osakabe S, Adachi S. Japanese Journal of Applied Physics,1997,36,7119.
37 Horowitz G, Garnier F. Journal of the Electrochemical Society,1985,132,634.
38 Horowitz G, Tourillon G, Garnier F. Journal of the Electrochemical Society,1984,131,151.
39 Garner L E, Steirer K X, Young J L, et al. ChemSusChem,2017,10,767.
40 Lebedev M V, Calvet W, Mayer T, et al. The Journal of Physical Chemistry C,2014,118,12774.
41 Yang F, Nielander A C, Grimm R L, et al. The Journal of Physical Chemistry C,2016,120,6989.
42 Kornblum L, Fenning D P, Faucher J, et al. Energy & Environmental Science,2017,10,377.
43 Sun K, Saadi F H, Lichterman M F, et al. Proceedings of the National Academy of Sciences,2015,112,3612.
44 Hu S, Shaner M R, Beardslee J A, et al. Science,2014,344,1005.
45 Kang D, Young J L, Lim H, et al. Nature Energy,2017,2,17043.
46 Lin Y, Battaglia C, Boccard M, et al. Nano Letters,2013,13,5615.
47 Nielander A C, Shaner M R, Papadantonakis K M, et al. Energy & Environmental Science,2015,8,16.
[1] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[2] 李秀英, 肖卓豪, 陶歆月, 汪永清, 杨柯, 石纪军, 邓波. 高水平放射性废物固化用磷酸盐玻璃的研究进展[J]. 材料导报, 2021, 35(5): 5032-5039.
[3] 陈健, 顾晨宇, 杨宁, 邱天, 徐杰, 陈翔宇, 朱帅, 焦齐统, 潘炜, 刘晶晶. LaNi5.5Sn1.5-C-Si合金优异的长期吸/放氢循环性能[J]. 材料导报, 2021, 35(4): 4112-4117.
[4] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[5] 左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
[6] 杨波, 王启扬, 杨肖, 杨冬梅. 原位反应制备陶瓷基复合相变材料及其工艺研究[J]. 材料导报, 2020, 34(Z1): 128-131.
[7] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[8] 荣雁. 新型绝热材料在稠油注蒸汽管线保温中的应用[J]. 材料导报, 2020, 34(Z1): 173-177.
[9] 郭鹏, 冯云霞, 孟献春, 孟建玮, 潘维霖, 高云, 刘洋. 蓄盐融雪除冰剂微观分析及对混合料水稳定性的影响[J]. 材料导报, 2020, 34(6): 6062-6065.
[10] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[11] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[12] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[13] 吴玲玲, 任其亮, 罗莉. 公路沥青混凝土路面材料高温稳定性研究[J]. 材料导报, 2020, 34(22): 22083-22086.
[14] 耿九光, 兰倩, 刘光军, 周恒玉, 刘润喜. 基于表面能理论的破碎卵石与沥青粘附性能研究[J]. 材料导报, 2020, 34(20): 20034-20039.
[15] 刘亮, 汪志太, 杨伟, 王振军, 蔡长春, 余欢. 铜模喷铸Mg-6Al-1Y合金快冷组织形成及其固溶行为[J]. 材料导报, 2020, 34(20): 20066-20069.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed