Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4112-4117    https://doi.org/10.11896/cldb.20010157
  金属与金属基复合材料 |
LaNi5.5Sn1.5-C-Si合金优异的长期吸/放氢循环性能
陈健, 顾晨宇, 杨宁, 邱天, 徐杰, 陈翔宇, 朱帅, 焦齐统, 潘炜, 刘晶晶
扬州大学机械工程学院,扬州 225127
Excellent Long-term Hydrogen Absorption/Desorption Cycling Property of LaNi5.5Sn1.5-C-Si Alloy
CHEN Jian, GU Chenyu, YANG Ning, QIU Tian, XU Jie, CHEN Xiangyu, ZHU Shuai, JIAO Qitong, PAN Wei, LIU Jingjing
School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
下载:  全 文 ( PDF ) ( 4697KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 AB5型储氢合金在气固储氢、氢压缩、镍氢电池等领域具有广阔的应用前景,其循环稳定性是人们的一个关注点。本实验通过电弧熔炼的冶金方法,结合长时间退火的热处理工艺,制备了以CaCu5相为主相,以富Ni/Sn相为次要相,以及少量C相和Si相弥散分布的LaNi5.5Sn1.5-C-Si合金,并结合LaNi5基础合金,研究了LaNi5.5Sn1.5-C-Si合金在1 000周吸/放氢循环过程中的储氢性能变化规律。结果表明,随着吸/放氢循环,合金的储氢容量略有降低,吸/放氢平台发生细微的倾斜,但以上变化远远小于LaNi5合金循环1 000周的变化。LaNi5.5Sn1.5-C-Si合金循环1 000周的容量保持率高达98%,这可能是由于C和Si相的弥散分布对合金颗粒的粉化起到了缓冲作用。此外,LaNi5.5Sn1.5-C-Si合金具有良好的吸氢动力学性能,在383~423 K、2 MPa氢压下200 s内即可完全吸氢,合金良好的吸氢动力学性能可能与富Ni/Sn相的催化作用有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈健
顾晨宇
杨宁
邱天
徐杰
陈翔宇
朱帅
焦齐统
潘炜
刘晶晶
关键词:  储氢材料  AB5型合金  储氢性能  循环稳定性    
Abstract: LaNi5-based hydrogen storage alloys have wide application prospect in many areas such as gaseous hydrogen storage, hydrogen compressing, Ni/MH batteries etc. Their cycling stability has always been an important problem. In this study, LaNi5.5Sn1.5-C-Si alloy with CaCu5 main phase and a small amount of Ni/Sn phase, C phase and Si phase was prepared by arc melting metallurgical method combined with long time annealing treatment. The evaluation trend in the hydrogen storage performance of the LaNi5.5Sn1.5-C-Si alloy during 1 000 hydrogen absorption/desorption cycles are studied in comparison with LaNi5-base alloys. It is found that with increasing cycle number, the hydrogen storage capacity is slightly decreased, and the hydrogen absorption/desorption plateaus become a little tilted. However, the above changes are far less than that of LaNi5 alloys. LaNi5.5Sn1.5-C-Si alloy preserve a high cycling stability of reach 98% probably because of the buffering effect of the C and Si dispersion phases which relive the pulverization of the alloy particles. Moreover, the alloys have good kinetics performance and can fully absorb hydrogen within 200 s in the temperature range of 383—423 K at 2 MPa. The good hydrogen absorption kinetics may be related to the catalytic effect of the Ni/Sn-rich phase.
Key words:  hydrogen storage material    AB5-type alloy    hydrogen storage property    cycling stability
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TG139.7  
基金资助: 国家自然科学基金青年基金(51801176);江苏省自然科学基金青年基金(BK20170502);江苏省大学生创新创业训练计划项目基金(20191111707Y);扬州大学大学生创新创业训练计划项目/学术科技创新基金项目(X20190335)
通讯作者:  liujj@yzu.edu.cn   
作者简介:  陈健,2017年6月就读于扬州大学机械工程学院材料加工与控制工程专业,加入“新能源材料研发与应用”课题组,一直致力于储氢材料尤其是金属储氢合金的研究,精通材料的结构表征和储氢性能的测试与分析。
刘晶晶,扬州大学机械工程学院材料加工与控制工程系,副教授。2016年毕业于燕山大学环境与化学工程学院,化学工程博士学位。同年加入扬州大学机械工程学院材料系工作至今,主要从事先进储氢合金、动力电池及应用以及金属功能材料的研究。发表SCI学术论文40余篇。
引用本文:    
陈健, 顾晨宇, 杨宁, 邱天, 徐杰, 陈翔宇, 朱帅, 焦齐统, 潘炜, 刘晶晶. LaNi5.5Sn1.5-C-Si合金优异的长期吸/放氢循环性能[J]. 材料导报, 2021, 35(4): 4112-4117.
CHEN Jian, GU Chenyu, YANG Ning, QIU Tian, XU Jie, CHEN Xiangyu, ZHU Shuai, JIAO Qitong, PAN Wei, LIU Jingjing. Excellent Long-term Hydrogen Absorption/Desorption Cycling Property of LaNi5.5Sn1.5-C-Si Alloy. Materials Reports, 2021, 35(4): 4112-4117.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010157  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4112
1 Yao Z D, Liu L X, Xiao X Z, et al. Journal of Alloys and Compounds, 2018, 731, 524.
2 Pang Y P, Yuan T,Yang J H, et al. Catalysis Today, 2018, 318, 107.
3 Feng D C, Sun H,Wang X T,et al. Journal of Iron and Steel Research International, 2018, 25, 746.
4 Zlotea C, Sow M A, Ek G,et al. Journal of Alloys and Compounds, 2019, 775, 667.
5 Tan Z H, Ouyang L Z, Huang J M, et al. Journal of Alloys and Compounds, 2019, 770, 108.
6 Joseph B, Iadecola A, Schiavo B, et al. Journal of Physics and Chemistry of Solids, 2010, 71, 1069.
7 Balogun M S, Wang Z M, Chen H X,et al. International Journal of Hydrogen Energy, 2013, 38, 10157.
8 Cao D L, Du P, Leng H Y, et al. Special Casting and Non-Ferrous Metals, 2003(6), 36 (in Chinese).
曹大力, 杜屏, 冷海燕,等. 特种铸造及有色合金, 2003(6), 36.
9 Hu Z L. Hydrogen storage alloy, Chemical Industry Press, China, 2002 (in Chinese)
胡子龙. 贮氢合金, 化学工业出版社, 2002.
10 Chen S, Zhang N, Kan H M, et al. New Chemical Materials, 2017, 45(9), 26 (in Chinese).
陈思, 张宁, 阚宏敏,等. 化工新型材料, 2017, 45(9), 26.
11 Liu J J, Zhu S, Zheng Z, et al. Journal of Alloys and Compounds, 2019,778, 681.
12 Liu J J, Zheng Z, Cheng H H, et al. Journal of Alloys and Compounds, 2018, 731, 172.
13 Liu G L, Chen D M, Wang Y M, et al. Materials Science and Technology, 2018, 34, 1699.
14 Tarasov B P, Bocharnikov M S, Yanenko Y B, et al. International Journal of Hydrogen Energy, 2018, 43, 4415.
15 Zhang L, Li S C. Rare Metals, 2015, 34, 259.
16 Chen H H, Pan J P, Chen W, et al. Rare Metal Materials and Enginee-ring, 2011, 40(11), 1921 (in Chinese).
程宏辉, 潘金平, 陈伟, 等. 稀有金属材料与工程, 2011, 40(11), 1921.
17 Li S L, Wang P, Chen W, et al. Journal of Alloys and Compounds, 2009, 485, 867.
18 Zhu Z D, Zhu S, Lu H Q, et al. International Journal of Hydrogen Energy, 2019, 44, 15159.
19 Stange M, Maehlen J P, Yartys V A, et al. Journal of Alloys and Compounds, 2005, 404, 604.
20 Mohammed I S Abu Dakka, Jain I P. International Journal of Hydrogen Energy, 2000, 25, 773.
21 Sumita Srivastava, Sai Raman S S, Singh B K, et al. International Journal of Hydrogen Energy, 2000, 25, 431.
22 Yi S P, Zhang H Y, Zhang G Q, et al. Physica B, 2006, 373, 131.
23 Latroche M, Rodriguez-Carvajal J, Percheron-Guegan A, et al. Journal of Alloys and Compounds, 1995, 218, 64.
24 Young K, Ouchi T, Reichman B, et al. Journal of Alloys and Compounds, 2011, 509, 3995.
25 Lundin C E, Lynch F E, Magee C B. Journal of Less Common Metals, 1997, 56, 19.
26 Flanagan T B, Park C N, Oates W A. Solid State Chemistry, 1995, 23, 291.
[1] 杨波, 王启扬, 杨肖, 杨冬梅. 原位反应制备陶瓷基复合相变材料及其工艺研究[J]. 材料导报, 2020, 34(Z1): 128-131.
[2] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[3] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[4] 周超, 王辉, 欧阳柳章, 朱敏. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126.
[5] 王 斌,张乐乐,杜金晶,张 博,梁李斯,朱 军. 电热还原法制备V-Ti-Cr-Fe储氢合金[J]. 《材料导报》期刊社, 2018, 32(10): 1635-1638.
[6] 张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed