Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 117-126    https://doi.org/10.11896/cldb.201901013
  材料与可持续发展(一)——面向洁净能源的先进材料 |
高压复合储氢罐用储氢材料的研究进展
周超1, 王辉1,2, 欧阳柳章1,2, 朱敏1,2
1 华南理工大学材料科学与工程学院,广东省先进储能材料重点实验室,广州 510641
2 华南理工大学中-澳能源与环境材料联合实验室,广州 510641
The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel
ZHOU Chao1, WANG Hui1,2, OUYANG Liuzhang1,2, ZHU Min1,2
1 Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641
2 China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641
下载:  全 文 ( PDF ) ( 2232KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢能因来源广、无污染、热值高等特点成为解决能源问题的重要方案。随着燃料电池技术的发展,氢能在车载方面的应用得到进一步拓宽,但氢气的加注、存储问题成为限制氢能汽车发展的瓶颈之一。实现氢气安全高效的存储是氢能规模化应用的关键。
   目前主要的储氢方式有高压气态、低温液态、固态。通过增加氢气压力和提高容器材料的比强度,可有效提高气态储氢系统的质量储氢密度,但由于气体分子间作用力的影响,高压气态储氢的体积储氢密度较低。同时过高的氢压对安全储氢罐的设计和成本也是一大挑战。通过加压、降温液化氢气实现的液态储氢拥有理想的质量储氢密度和体积储氢密度,但保存液态氢对设备要求十分苛刻,且液化氢气所需能耗为氢燃烧热值的40%,得不偿失。固态储氢方式将氢以原子、离子的形式存储于氢化物中,因此固态储氢材料的体积储氢密度可观,且材料吸/放氢条件温和,安全性高,但固态储氢材料的质量储氢密度不占优势。高压复合储氢罐将高压储氢技术与固态储氢材料相结合,同时拥有气态储氢与固态储氢的优势,是实现安全高密度储氢的有效途径。通过气-固复合的储氢方式,可有效提升高压储氢罐的体积储氢密度,减小储氢罐体积,降低充氢压力,提高安全性。而发展在高压条件下具有良好充/放氢特性的储氢材料是提升高压复合储氢罐性能的关键。
   TiCr2基、ZrFe2基AB2型合金是主要的高压储氢合金,对它们的研究集中在通过利用不同原子半径、电子结构的合金元素进行A侧和/或B侧元素替代,实现对合金平台压、容量、吸放氢动力学性能的有效调控。但TiCr2基、ZrFe2基储氢合金的质量储氢密度仍然偏低,相比之下,NaAlH4与AlH3具有高的储氢密度,是潜在的高压储氢材料。通过纳米化、掺杂催化剂等手段能够有效降低NaAlH4的脱氢温度,提高其循环稳定性;通过球磨、改善溶剂等方法可提升AlH3的合成产率、改善其结晶性。
   本文简要介绍了高压复合储氢罐的原理及对高压储氢材料的主要性能要求,着重评述了间隙型储氢合金(TiCr2、ZrFe2)、铝基金属氢化物(NaAlH4、AlH3)两类高压储氢材料的结构、性能特点及研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周超
王辉
欧阳柳章
朱敏
关键词:  固态储氢  高压复合储氢罐  高压储氢材料  ZrFe2  TiCr2    
Abstract: Hydrogen energy is one of the most important choices for realizing clean energy because of its wide sources, no pollution, and high energy density. The technological innovation of fuel cells contributes to the attractive prospect of hydrogen energy in vehicles, but the problem of hydrogen filling and hydrogen storage has become one of the obstacles to the development of hydrogen energy cars. The safe and efficient hydrogen storage is crucial for the large-scale application of hydrogen energy.
Till now there have been developed three main hydrogen storage methods, which include high-pressure gaseous hydrogen storage, low-temperature liquid hydrogen storage and solid-state hydrogen storage. The gravimetric density of gaseous hydrogen storage system can be promoted by increasing the pressure of hydrogen and the specific strength of container material. However, H2 molecular interaction causes a relatively low volumetric density of gaseous hydrogen storage system, and excessively high hydrogen pressure challenges the safety and heightens design difficulty and cost of hydrogen tanks. The liquid hydrogen storage owns ideal gravimetric and volumetric density, which can be realized by compres-sing and liquefying hydrogen gas. However, liquid hydrogen is particularly prone to volatilize and liquid hydrogen container requires strict storing conditions. In addition, the liquefying process of gaseous hydrogen is uneconomical, as it consumes an energy quantity that constitutes about 40% of the combustion heat release of the stored hydrogen. For the solid-state hydrogen storage, hydrogen is stored in the hydrides in the form of atom or ion. Hence, the solid-state hydrogen storage obtains an impressively high volumetric density and enjoys greater security because the hydrogen storage materials absorb/desorb hydrogen at mild conditions. But the gravimetric density of hydrogen storage materials is comparatively low. The high-pressure hybrid hydrogen storage vessel, which combines the advantages of gaseous and solid-state hydrogen storage methods, offers a feasible path to safe and high-density hydrogen storage. The volumetric density of high-pressure hydrogen tank can be effectively enhanced by the hydrogen storage materials, resulting in lower operating pressure, smaller volume, and higher safety. The performance promotion of the high-pressure hybrid hydrogen storage vessels depends upon the development of materials with excellent hydrogen sorption performances under high hydrogen pressure.
The AB2 type ZrFe2-based and TiCr2 based alloys are the currently prevailing high-pressure hydrogen storage materials. Though researchers mainly concentrate on and have achieved the regulation of storage capacity, absorption/desorption pressure plateau and kinetics through the alloying trials which partially substitute elements with various atomic radius and electronic structures for either A-site or B-site, the gravimetric densities of ZrFe2-based and TiCr2-based alloys are still unsatisfactory. NaAlH4 and AlH3 display considerable potential as candidate storage materials owing to their intrinsically high storage density. For NaAlH4, sufficient works have preliminarily confirmed the effectiveness of nanosizing and catalyst-doping toward dehydrogenation temperature reduction and cyclic stability enhancement. And the yield of AlH3 along with its crystallinity can likely be enhanced by adopting ball milling or improving the solvent.
This review starts with a brief introduction of how the high-pressure hybrid hydrogen storage vessel works and a summary of the performance requirements of the hydrogen storage materials. It then provides detailed discussion and description upon the structure, characteristics and research status quo with respect to the above-mentioned two species of high-pressure hydrogen storage materials, i.e.hydrogen storage alloys (ZrFe2, TiCr2) and aluminum based complex hydrides (NaAlH4, AlH3).
Key words:  solid-state hydrogen storage    high-pressure hybrid hydrogen storage vessel    high-pressure hydrogen storage material    ZrFe2    TiCr2
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TG139+.7  
基金资助: 国家自然科学基金创新群体项目(51621001);国家自然科学基金联合基金项目(U1601212)
作者简介:  周超,2016年6月毕业于南京工业大学,获得工学学士学位。现为华南理工大学材料科学与工程学院硕士研究生,在朱敏教授的指导下进行研究。朱敏,华南理工大学副校长,材料科学与工程学院学院教授、博士生导师,memzhu@scuct.edu.cn。
引用本文:    
周超, 王辉, 欧阳柳章, 朱敏. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126.
ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel. Materials Reports, 2019, 33(1): 117-126.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901013  或          http://www.mater-rep.com/CN/Y2019/V33/I1/117
1 Zhu M. Introduction to Advanced Hydrogen Storage Materials, Science Press, China,2015(in Chinese).朱敏.先进储氢材料导论,科学出版社,2015.2 http:∥www.toyota-global.com/innovation/environmental_technology/fuelcell_vehicle/3 Wolf J. MRS Bulletin,2002,27(9),684.4 Arnold G, Wolf J. Teion Kogaku,2005,40(6),221.5 Jiang Z, Pan Q, Xu J, et al. International Journal of Hydrogen Energy,2012,39(30),17442.6 Li X G. Hydrogen and Hydrogen Energy, China Machine Press, China,2012(in Chinese).李星国.氢与氢能,机械工业出版社,2012.7 Rusman N A, Dahari M. International Journal of Hydrogen Energy,2016,41(28),12108.8 https:∥www.energy.gov/node/13151869 Luxenburger B, Müller W. International Journal of Hydrogen Energy,1985,10(5),305.10 Takeichi N, Senoh H, Yokota T, et al. International Journal of Hydrogen Energy,2003,28(10),1121.11 Mori D, Haraikawa N, et al. MRS Proceedings,2005,884,72.12 Lee H H, Kim H K, Hwang K H. U.S. patent, US20090155648,2009.13 Kojima Y, Kawai Y, Towata S I, et al. Journal of Alloys and Compounds,2006,419(1-2),256.14 Wang L. Micromechanics-based failure theory for strength and life investigation of carbon fiber-reinforced composite hydrogen storage vessel. Ph.D. Thesis, Zhejiang University, China,2016(in Chinese).王亮.基于微观力学分析的复合材料储氢容器强度与寿命研究.博士学位论文,浙江大学,2016.15 Mori D, Kobayashi N, Shinozawa T, et al. Journal of the Japan Institute of Metals,2005,69(3),308.16 Cao Z, Ouyang L, Hui W, et al. International Journal of Hydrogen Energy,2015,40(6),2717.17 Cao Z, Ouyang L, Wang H, et al. International Journal of Hydrogen Energy,2016,41(26),11242.18 Cao Z, et al. Journal of Alloys and Compounds,2015,639,452.19 Li S Q, Chen C P, Wang X H, et al. In: Conference Record of the International Hydrogen Energy Conference. Beijng,2006,pp.29.20 Yasuai O. Properties and Applications of Mental Hydrides, Chemical Industry Press, China,1990(in Chinese).大角泰章.金属氢化物的性质与应用,化学工业出版社,1990.21 Guo X M, Wang S M, Liu X P, et al. Metal Functional Materials,2011,18(4),10(in Chinese).郭秀梅,王树茂,刘晓鹏,等.金属功能材料,2011,18(4),10.22 Zotov T, Movlaev E, Mitrokhin S, et al. Journal of Alloys and Compounds,2008,459(1-2),220.23 Ropka J, erny' R, Paul-Boncour V. Journal of Solid State Chemistry,2011,184(9),2516.24 Shaltiel D, Jacob I, Davidov D. Journal of The Less-Common Metals,1977,53(1),117.25 Filipek S M, et al. Polish Journal of Chemistry,2001,33(9),1921.26 Zotov T A, et al. Journal of Alloys and Compounds,2011,509(5),S839.27 Mitrokhin S, Zotov T, Movlaev E, et al. Journal of Alloys and Compounds,2013,580(24),S90.28 Jain A, Jain R K, Agarwal S, et al. Journal of Alloys and Compounds,2008,454(1-2),31.29 Koultoukis E D, Makridis S S, Pavlidou E, et al. International Journal of Hydrogen Energy,2014,39(36),21380.30 Sivov R B, et al. Journal of Alloys and Compounds,2011,509(5),S763.31 Sivov R B, Zotov TA, Verbetsky V N. Interaction of Hydrogen Isotopes with Structural Materials (IHISM-08 Junior), Sarov,2009,201.32 Banerjee S, Kumar A, Pillai C G S. Intermetallics,2014,51(51),30.33 Li H. Study on hydrogen storage alloys applied in high-pressure hydrogen storage vessel and metal hydride compressor. Master’s Thesis, Zhejiang University, China,2010(in Chinese).李慧.用于氢化物复合储氢器和高压氢化物压缩器的储氢合金研究.硕士学位论文,浙江大学,2010.34 Jacob I, Bereznitsky M. Journal of Alloys and Compounds,2002,336(1-2),L1.35 Davidson D J, Srivastava O N. International Journal of Hydrogen Energy,2001,26(3),219.36 Li Z, Wang H, et al. Journal of Alloys and Compounds,2017,704,491.37 Sivov R B, Zotov T A, Verbetsky V N. International Journal of Hydrogen Energy,2011,36(1),1355.38 Li S L, Cheng H H, Deng X X, et al. Journal of Alloys and Compounds,2008,460(1-2),186.39 Hu Z L. Hydrogen Storage Materials, Chemical Industry Press, China,2002(in Chinese).胡子龙.贮氢材料,化学工业出版社,2002.40 Zhang Q A, Lei Y Q, Yang X G, et al. Journal of Alloys and Compounds,1999,292(1-2),236.41 Tu Y L. Research on modification of Zr-Fe based high pressure hydrogen storage alloys. Master’s Thesis, General Research Institute for Nonferrous Metals,2014(in Chinese).涂有龙.高坪台压Zr-Fe系储氢合金改性研究.硕士学位论文,北京有色金属研究总院,2014.42 Tang R Z, Tian R Z. Binary Alloy Phase Diagrams and Crystal Structure of Intermediate Phase, Central South University Press, China,2009(in Chinese).唐仁政,田荣璋.二元合金相图及中间相晶体结构,中南大学出版社,2009.43 Huang T Z. Research on hydrogen storage characteristics and phase composition of TiCr base alloys. Ph.D. Thesis, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences,2005(in Chinese).黄太仲.TiCr基合金的储氢性能及相结构研究.博士学位论文,中国科学院上海微系统与信息技术研究所,2005.44 Klyamkin S N, Kovriga A Y, Verbetsky V N. International Journal of Hydrogen Energy,1999,24(2),149.45 Bodega J, Fernández J F, Leardini F, et al. Journal of Physics & Chemistry of Solids,2011,72(11),1334.46 Huang T Z, Wu Z, Xia B, et al. Materials Science and Engineering A,2005,397(1-2),284.47 Beeri O, Cohen D, Gavra Z, et al. Journal of Alloys and Compounds,2003,352(1),111.48 Santos D S D, Bououdina M, Fruchart D. Journal of Alloys and Compounds,2002,340(1-2),101.49 Hagström M T, Klyamkin S N, Lund P D. Journal of Alloys and Compounds,1999,s293-295,67.50 Liu L, Chen L, et al. Journal of Alloys and Compounds,2015,636,117.51 Akiba E, Iba H. Intermetallics,1998,6(6),461.52 Graetz J. Chemical Society Reviews,2009,38(1),73.53 Li L, et al. Journal of Materials Chemistry,2012,22(27),13782.54 Bogdanović B, Schwickardi M. Journal of Alloys and Compounds,1997,253-254,1.55 Bogdanović B, Brand R A, Marjanović A, et al. Journal of Alloys and Compounds,2000,302(1-2),36.56 Ley M B, Meggouh M, Moury R, et al. Materials,2015,8(9),5891.57 Schüth F, Bogdanović B, Felderhoff M. Chemical Communications,2004,(20),2249.58 Anton D L. Journal of Alloys and Compounds,2003,s356-357(16),400.59 Sun T. Improving the hydrogen storage properties of metal complex hydrides by nano-composite and catalysis. Ph.D. Thesis, South China University of Technology,2010(in Chinese).孙泰.用复合和催化方法改善金属配位氢化物的储氢性能.博士学位论文,华南理工大学,2010.60 Sun T, Zhou B, Wang H, et al. International Journal of Hydrogen Energy,2008,33(9),2260.61 Sun J, Xiao X Z, Zheng Z J, et al. Rare Metals,2017,36(2),1.62 Zidan R A, Takara S, Hee A G, et al. Journal of Alloys and Compounds,1999,285(1-2),119.63 Jensen C M, Zidan R, Mariels N, et al. International Journal of Hydrogen Energy,1999,24(5),461.64 Wang P, Kang X D, Cheng H M. Journal of Alloys and Compounds,2006,421(1-2),217.65 Chen P, Zhu M. Materials Today,2008,11(12),36.66 Baldé C P, Hereijgers B P, Bitter J H, et al. Angewandte Chemie International Edition,2006,118(21),3581.67 Li Y, Zhou G, Fang F, et al. Acta Material,2011,59(4),1829.68 Nielsen T K, Manickam K, et al. ACS Nano,2009,3(11),3521.69 Gao J, Adelhelm P, Verkuijlen M H W, et al. The Journal of Physical Chemistry C,2010,114(10),4675.70 Bhakta R K, Herberg J L, Jacobs B, et al. Journal of the American Chemical Society,2009,131(37),13198.71 Nielsen T K, Polanski M, Zasada D, et al. ACS Nano,2011,5(5),4056.72 Kang X D, Wang P, Song X. P, et al. Journal of Alloys and Compounds,2006,424(1-2),365.73 Bogdanovic B, Felderhoff M, Pommerin A, et al. Journal of Alloys and Compounds,2010,471(1),383.74 Graetz J, Reilly J J, Yartys V A, et al. Journal of Alloys and Compounds,2011,509(Suppl.2),S517.75 Ikeda K, Muto S, et al. Nanotechnology,2009,20(20),204004.76 Graetz J, Reilly J, et al. Brookhaven National Laboratory,2006.77 Zhang Y. Synthesis and characterization of AlH3. Master’s Thesis, Southwest University of Science and Technology,China,2013(in Chinese).张永岗.氢化铝的制备与表征.硕士学位论文,西南科技大学,2013.78 Sabrina S, Susanne M O, Ole Martin L, et al. Journal of Materials Che-mistry,2008,18(20),2361.79 Sandrock G, Reilly J, Graetz J, et al. Journal of Alloys and Compounds,2006,421(1),185.80 Sandrock G, Reilly J, et al. Applied Physics A,2005,80(4),687.81 Chen T, Liu H Z, Xu L, et al. Journal of Materials Science &Engineering,2017,35(1),9(in Chinese).陈田,刘海镇,徐丽,等.材料科学与工程学报,2017,35(1),9.82 Andreasen A. Journal of Alloys and Compounds,2006,419(1),40.83 Graetz J. Isrn Materials Science,2012,2012(2012),1.84 Baranowski B, Tkacz M. Zeitschrift für Physikalische Chemie,1983,135(135),27.85 Saitoh H., Okajima Y, Yoneda Y, et al. Journal of Alloys and Compounds,2010,496(1-2),L25.86 Brinks H. W, Istad-Lem A, Hauback B C. Journal of Physical Chemistry B,2006,110(51),25833.87 Sartori S, Istad-Lem A, Brinks H W, et al. International Journal of Hydrogen Energy,2009,34(15),6350.88 Duan C, Hu L, Dan X. Green Chemistry,2015,17(6),3466.89 Brower F M, Matzek N E, Reigler P F, et al. Journal of the American Chemical Society,1976,98(9),2450.
[1] 黄文成, 张锦国, 袁军, 刘江文. Mg/Nb复合薄膜的结构调控及其对脱氢温度的影响[J]. 《材料导报》期刊社, 2018, 32(7): 1084-1087.
[2] 何晖, 罗文华, 寇化秦. 改善ZrCo储氚合金抗歧化性能的研究综述:晶体结构、放氢热力学和歧化动力学*[J]. CLDB, 2017, 31(21): 1-8.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed