Enhancing the Anti-disproportionation Property of ZrCo Alloy for Tritium Storage: Crystal Structure, Dehydrogenation Thermodynamics and Disproportionation Kinetics
HE Hui1, LUO Wenhua1, KOU Huaqin2
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908; 2 Institute of Materials, China Academy of Engineering Physics, Mianyang 621907
Abstract: Owing to excellent hydrogen storage properties and safety characteristics, ZrCo alloy has been selected as an important candidate material for rapid storage and delivery of hydrogen isotopes by the ITER team. However, the hydrogen-induced disproportionation of ZrCo during the hydrogen absorption/desorption processes will cause serious degradation of hydrogen storage properties and has been considered to be the biggest obstacle to its wide application in rapid storage and delivery of hydrogen isotopes. Therefore, it’s extremely significant to improve the anti-disproportionation property of ZrCo. In this paper, progress in research and development on the hydrogen storage properties of ZrCo as well as improving the anti-disproportionation property by element substitution of Hf, Sc, Ti, Ni, Fe are reviewed. Meanwhile, the possible development direction of further improving the anti-disproportionation property of ZrCo is proposed.
1 Lund H. Renewable energy strategies for sustainable development[J]. Energy, 2007,32(6):912. 2 Nowotny J, Hoshino T, Dodson J, et al. Towards sustainable energy. Generation of hydrogen fuel using nuclear energy[J]. Int J Hydrogen Energy, 2016,41(30):12812. 3 Holtkamp N. An overview of the ITER project[J]. Fus Eng Des, 2007,82(5-14):427. 4 Glugla M, Lsser R, D?rr L, et al. The inner deuterium/tritium fuel cycle of ITER[J]. Fus Eng Des, 2003,69(1-4):39. 5 Cho S, Chang M H, Yun S H, et al. R&D activities on the tritium storage and delivery system in Korea[J]. Fus Sci Technol, 2011,60(3):1077. 6 Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001,414(6861):353. 7 Bhattacharyya R, Mohan S. Solid state storage of hydrogen and its isotopes: An engineering overview[J]. Renew Sustain Energy Rev, 2015,41:872. 8 Yang K, Song L, Lv M Q. Application of hydrogen storage materials in the tritium technics[J]. Atomic Energy Sci Technol, 2004,38(4):328(in Chinese). 杨柯, 宋莉, 吕曼祺. 贮氢材料在氚技术中的应用[J]. 原子能科学技术, 2004,38(4):328. 9 Shmayda W T, Heics A G, Kherani N P. Comparison of uranium and zirconium cobalt for tritium storage[J]. J Less Common Met, 1990,162(1):117. 10Guyadec F L, Génin X, Bayle J P, et al. Pyrophoric behaviour of uranium hydride and uranium powders[J]. J Nucl Mater, 2010,396(2):294. 11Kou H, Luo W, Huang Z, et al. Fabrication and experimental validation of a full-scale depleted uranium bed with thin double-layered annulus configuration for hydrogen isotopes recovery and delivery[J]. Energy, 2015,90(1):588. 12Li G, Zhou H, Gao T. Structural, vibrational and thermodynamic properties of zirconium-cobalt: First-principles study[J]. J Nucl Mater, 2012,424(1-3):220. 13Chattaraj D, Parida S C, Dash S, et al. Structural, electronic and thermodynamic properties of ZrCo and ZrCoH3: A first-principles study[J]. Int J Hydrogen Energy, 2012,37(24):18952. 14Chattaraj D, Parida S C, Dash S, et al. Density functional study of vibrational, thermodynamic and elastic properties of ZrCo and ZrCoX3 (X=H, D and T) compounds[J]. J Alloy Compd, 2015,629:297. 15Nagasaki T, Konishi S, Katsuta H, et al. A zirconium-cobalt compound as the material for a reversible tritium getter[J]. Fus Technol, 1986,9(3):506. 16Konishi S, Nagasaki T, Hayashi T, et al. Equilibrium hydrogen pressure on the solid solutions of ZrCo-HfCo intermetallic compounds[J]. J Nucl Mater, 1995,223(3):300. 17Penzhorn R D, Devillers M, Sirch M. Evaluation of ZrCo and other getters for tritium handling and storage[J]. J Nucl Mater, 1990,170(3):217. 18Devillers M, Sirch M, Bredendiekkaemper S, et al. Characterization of the ZrCo-hydrogen system in view of its use for tritium storage[J]. Chem Mater, 1990,2(3):255. 19Luo D L, Jiang G, Zhu Z H, et al. Quantum mechanical calculation of the adsorption of hydrogen isotopes on metallic zirconium[J]. Acta Phys-Chim Sin, 2001,17(10):913(in Chinese). 罗德礼, 蒋刚, 朱正和, 等. 锆钴合金氢化反应热力学函数的计算[J]. 物理化学学报, 2001,17(10):913. 20Naik Y, Rao G A R, Venugopal V. Zirconium-cobalt intermetallic compound for storage and recovery of hydrogen isotopes[J]. Intermetallics, 2001,9(4):309. 21Guo X M, Wang S M, Liu X P, et al. Hydrogen isotopes absorption/desorption of ZrCo intermetallic compound[J]. Met Funct Mater, 2011,18(5):41(in Chinese). 郭秀梅, 王树茂, 刘晓鹏, 等. ZrCo合金储放氢同位素研究[J]. 金属功能材料, 2011,18(5):41. 22Jat R A, Parida S C, Nuwad J, et al. Hydrogen sorption-desorption studies on ZrCo-hydrogen system[J]. J Therm Anal Calorim, 2013,112(1):37. 23Bloch J, Mintz M H. Kinetics and mechanisms of metal hydrides formation-A review[J]. J Alloy Compd, 1997,253(6):529. 24Bloch J, Brill M, Ben-Eliahu Y, et al. The initial stages of the reaction between ZrCo and hydrogen studied by hot-stage microscopy[J]. J Alloy Compd, 1998,267(1-2):158. 25Batz V, Jacob I, Mintz M H, et al. The hydriding kinetics of massive ZrCo[J]. J Alloy Compd, 2001,325(1-2):137. 26Yun S H, Yun H O, Cho S, et al. A study of the consecutive absorption/desorption cycles of ZrCo-H2 system[J]. IEEE Trans Plasma Sci, 2015,43(7):2218. 27Kou H, Luo W, Huang Z, et al. Effects of temperature and hydrogen pressure on the activation behavior of ZrCo[J]. Int J Hydrogen Energy, 2016,41(25):10811. 28Devillers M, Sirch M, Penzhorn R D. Hydrogen-induced disproportionation of the intermetallic compound ZrCo[J]. Chem Mater, 1992,4(3):631. 29Konishi S, Nagasaki T, Okuno K. Reversible disproportionation of ZrCo under high temperature and hydrogen pressure[J]. J Nucl Mater, 1995,223(3):294. 30Guo X M, Wang S M, Liu X P, et al. Structural characteristics and mechanism of hydrogen-induced disproportionation of the ZrCo alloy[J]. Int J Miner Metall Mater, 2012,19(11):1010. 31Hara M, Okabe T, Mori K, et al. Kinetics and mechanism of hydrogen-induced disproportionation of ZrCo[J]. Fus Eng Des, 2000,49(1):831. 32Bekris N, Besserer U, Sirch M, et al. On the thermal stability of the zirconium/cobalt-hydrogen system[J]. Fus Eng Des, 2000,49:781. 33Bekris N, Sirch M. On the mechanism of the disproportionate of ZrCo hydrides[J]. Clin Chem, 2012,62(1):50. 34Westlake D G. Stoichiometries and interstitial site occupation in the hydrides of ZrNi and other isostructural intermetallic compounds[J]. J Less Common Met, 1980,75(2):177. 35Jacob I, Bloch J M. Interstitial site occupation of hydrogen atoms in intermetallic hydrides: ZrNiHx case[J]. Solid State Commun, 1982,42(8):541. 36Yang S, Aubertin F, Rehbein P, et al. A M?ssbauer spectroscopy study of the system ZrNi-H and ZrCo-H[J]. Z Kristallogr-Cryst Mater, 1991,195(3-4):281. 37Jat R A, Singh R, Parida S C, et al. Determination of deuterium site occupancy in ZrCoD3, and its role in improved durability of Zr-Co-Ni deuterides against disproportionation[J]. Int J Hydrogen Energy, 2014,39(28):15665. 38Tan G, Liu X, Jiang L, et al. Dehydrogenation characteristic of Zr-Hf-Co alloy[J]. J Xi’an Jiaotong University, 2007,41(11):1380. 39Tan G, Liu X, Jiang L, et al. Dehydrogenation characteristic of Zr(1-x)MxCo (M=Hf, Sc) alloy[J]. Trans Nonferr Met Soc China, 2007,17(S):949. 40Huang Z, Liu X, Jiang L, et al. Hydrogen storage properties of Zr1-xTixCo intermetallic compound[J]. Rare Met, 2006,25(S):200. 41Jat R A, Parida S C, Agarwal R, et al. Effect of Ni content on the hydrogen storage behavior of ZrCo1-xNix alloys[J]. Int J Hydrogen Energy, 2013,38(3):1490. 42Jat R A, Singh R, Parida S C, et al. Structural and hydrogen isotope storage properties of Zr-Co-Fe alloy[J]. Int J Hydrogen Energy, 2015,40(15):5135. 43Peng L, Jiang C, Xu Q, et al. Hydrogen-induced disproportionation characteristics of Zr(1-x)Hf(x)Co (x=0, 0.1, 0.2 and 0.3) alloys[J]. Fus Eng Des, 2013,88(5):299. 44Flanagan T B, Noh H, Luo S. The thermodynamic characterization of ZrCo-H, HfCo-H, HfNi-H and Zr1-xHfxNi(Co) slloy-H systems[J]. J Alloy Compd, 2016,677:163. 45Zhao Y, Li R, Tang R, et al. Effect of Ti substitution on hydrogen storage properties of Zr1-xTixCo (x=0, 0.1, 0.2, 0.3) alloys[J]. J Energy Chem, 2014,23(1):9. 46Zhang G H, Sang G. Study on properties of hydrogen storage and hydrogen-induced disproportionation of Zr1-xTixCo alloys[J]. J Funct Mater, 2015,46(S):93(in Chinese). 张光辉,桑革. Zr1-xTixCo合金的储氢性能及抗氢致歧化效应研究[J]. 功能材料, 2015,46(S):93. 47Luo J J, Wang S M, Liu J, et al. Influence of Ti substitution for Zr on hydrogen storage property of ZrNi0.6Co0.4 alloy[J]. Chin J Rare Met, 2013,37(4):521(in Chinese). 罗敬军, 王树茂, 刘晶, 等. Ti部分替代Zr对ZrNi0.6Co0.4合金储氢特性的影响[J]. 稀有金属, 2013,37(4):521. 48Qi Y, Ju X, Wan C, et al. EXAFS and SAXS studies of ZrCo alloy doped with Hf, Sc and Ti atoms[J]. Int J Hydrogen Energy, 2010,35(7):2931. 49Jat R A, Parida S C, Agarwal R, et al. Investigation of hydrogen isotope effect on storage properties of Zr-Co-Ni alloys[J]. Int J Hydrogen Energy, 2014,39(27):14868. 50Zhang G, Sang G, Xiong R, et al. Effects and mechanism of Ti, Ni, Sc, Fe substitution on the thermal stability of zirconium cobalt-hydrogen system[J]. Int J Hydrogen Energy, 2015,40(20):6582. 51Jat R A, Pati S, Parida S C, et al. Synthesis, characterization and hydrogen isotope storage properties of Zr-Ti-Co ternary alloys[J]. Int J Hydrogen Energy, 2017,42(4):2248. 52Wang F, Li R, Ding C, et al. Effect of catalytic Ni coating with different depositing time on the hydrogen storage properties of ZrCo alloy[J]. Int J Hydrogen Energy, 2016,41(39):17421. 53Zhang G H, Sang G. Effects and mechanism of Ti substitution on the ability of anti-disproportionation of zirconium cobalt-hydrogen system[J]. Nucl Power Eng, 2016,37(3):54(in Chinese). 张光辉, 桑革. Ti改性ZrCo贮氚合金的抗氢致歧化机制研究[J]. 核动力工程, 2016,37(3):54. 54Wan J, Li R, Wang F, et al. Effect of Ni substitution on hydrogen storage properties of Zr0.8Ti0.2Co1-xNix (x=0, 0.1, 0.2, 0.3) alloys[J]. Int J Hydrogen Energy, 2016,41(18):7408. 55Kou H, Sang G, Luo W, et al. Comparative study of full-scale thin double-layered annulus beds loaded with ZrCo, Zr0.8Hf0.2Co and Zr0.8Ti0.2Co for recovery and delivery of hydrogen isotopes[J]. Int J Hydrogen Energy, 2015,40(34):10923. 56Kou H, Huang Z, Luo W, et al. Experimental study on full-scale ZrCo and depleted uranium beds applied for fast recovery and delivery of hydrogen isotopes[J]. Appl Energy, 2015,145:27. 57Gleiter H. Nanocrystalline materials[J]. Mater Sci Eng A, 1990,117(2):33. 58Zaluski L, Zaluska A, Str?m-Olsen J O. Nanocrystalline metal hydrides[J]. J Alloy Compd, 1997,253-254(5):70. 59Orimo S I, Fujii H. Effects of nanometer-scale structure on hydriding properties of Mg-Ni alloys: A review[J]. Intermetallics, 1998,6(3):185. 60Fichtner M. Properties of nanoscale metal hydrides[J]. Nanotechnology, 2009,20(20):259. 61Huot J. Nanocrystalline metal hydrides obtained by severe plastic deformations[J]. Metals, 2012,2(4):22. 62Zhu M, Lu Y, Ouyang L, et al. Thermodynamic tuning of Mg-based hydrogen storage alloys: A review[J]. Materials, 2013,6(10):4654.