Please wait a minute...
CLDB  2017, Vol. 31 Issue (21): 1-8    https://doi.org/10.11896/j.issn.1005-023X.2017.021.001
  材料综述 |
改善ZrCo储氚合金抗歧化性能的研究综述:晶体结构、放氢热力学和歧化动力学*
何晖1, 罗文华1, 寇化秦2
1 表面物理与化学重点实验室,绵阳 621908;
2 中国工程物理研究院材料研究所,绵阳 621907
Enhancing the Anti-disproportionation Property of ZrCo Alloy for Tritium Storage: Crystal Structure, Dehydrogenation Thermodynamics and Disproportionation Kinetics
HE Hui1, LUO Wenhua1, KOU Huaqin2
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908;
2 Institute of Materials, China Academy of Engineering Physics, Mianyang 621907
下载:  全 文 ( PDF ) ( 2578KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 ZrCo合金由于优异的储氢性能以及安全特性,已被国际热核实验堆(ITER)研发团队选取为用于氢同位素快速储存与供给的重点备选材料。然而,由吸/放氢循环过程中发生的氢致歧化效应导致的储氢性能严重衰减,成为了ZrCo合金推广应用于氢同位素快速储存与供给的最大障碍。因此,改善ZrCo合金的抗氢致歧化性能对其广泛应用于氢同位素快速储存与供给领域具有重要意义。本文介绍了ZrCo合金的储氢性能和氢致歧化特性,综述了元素替代(掺杂元素部分替代Zr或Co)改善ZrCo合金抗歧化性能的研究进展,并指出进一步改善ZrCo合金抗歧化性能的必要性及可能的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何晖
罗文华
寇化秦
关键词:  ZrCo  储氚合金  抗氢致歧化性能  元素替代  氢同位素储存  储氢    
Abstract: Owing to excellent hydrogen storage properties and safety characteristics, ZrCo alloy has been selected as an important candidate material for rapid storage and delivery of hydrogen isotopes by the ITER team. However, the hydrogen-induced disproportionation of ZrCo during the hydrogen absorption/desorption processes will cause serious degradation of hydrogen storage properties and has been considered to be the biggest obstacle to its wide application in rapid storage and delivery of hydrogen isotopes. Therefore, it’s extremely significant to improve the anti-disproportionation property of ZrCo. In this paper, progress in research and development on the hydrogen storage properties of ZrCo as well as improving the anti-disproportionation property by element substitution of Hf, Sc, Ti, Ni, Fe are reviewed. Meanwhile, the possible development direction of further improving the anti-disproportionation property of ZrCo is proposed.
Key words:  ZrCo    tritium storage alloy    anti-disproportionation property    element substitution    storage of hydrogen isotopes    hydrogen storage
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TL341  
  TG139+.7  
基金资助: 国家自然科学基金(21573200;21601165);国家科技部磁约束聚变专项(2011GB111003);中国工程物理研究院科学技术发展基金(2015B0302067)
通讯作者:  罗文华,男,1970年生,研究员,主要从事核燃料循环与材料的研究 E-mail:luowenhua@caep.cn   
作者简介:  何晖:男,1992年生,硕士研究生,主要从事氢同位素储存材料的研究 E-mail:hehui1760643446@163.com
引用本文:    
何晖, 罗文华, 寇化秦. 改善ZrCo储氚合金抗歧化性能的研究综述:晶体结构、放氢热力学和歧化动力学*[J]. CLDB, 2017, 31(21): 1-8.
HE Hui, LUO Wenhua, KOU Huaqin. Enhancing the Anti-disproportionation Property of ZrCo Alloy for Tritium Storage: Crystal Structure, Dehydrogenation Thermodynamics and Disproportionation Kinetics. Materials Reports, 2017, 31(21): 1-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.001  或          http://www.mater-rep.com/CN/Y2017/V31/I21/1
1 Lund H. Renewable energy strategies for sustainable development[J]. Energy, 2007,32(6):912.
2 Nowotny J, Hoshino T, Dodson J, et al. Towards sustainable energy. Generation of hydrogen fuel using nuclear energy[J]. Int J Hydrogen Energy, 2016,41(30):12812.
3 Holtkamp N. An overview of the ITER project[J]. Fus Eng Des, 2007,82(5-14):427.
4 Glugla M, Lsser R, D?rr L, et al. The inner deuterium/tritium fuel cycle of ITER[J]. Fus Eng Des, 2003,69(1-4):39.
5 Cho S, Chang M H, Yun S H, et al. R&D activities on the tritium storage and delivery system in Korea[J]. Fus Sci Technol, 2011,60(3):1077.
6 Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001,414(6861):353.
7 Bhattacharyya R, Mohan S. Solid state storage of hydrogen and its isotopes: An engineering overview[J]. Renew Sustain Energy Rev, 2015,41:872.
8 Yang K, Song L, Lv M Q. Application of hydrogen storage materials in the tritium technics[J]. Atomic Energy Sci Technol, 2004,38(4):328(in Chinese).
杨柯, 宋莉, 吕曼祺. 贮氢材料在氚技术中的应用[J]. 原子能科学技术, 2004,38(4):328.
9 Shmayda W T, Heics A G, Kherani N P. Comparison of uranium and zirconium cobalt for tritium storage[J]. J Less Common Met, 1990,162(1):117.
10Guyadec F L, Génin X, Bayle J P, et al. Pyrophoric behaviour of uranium hydride and uranium powders[J]. J Nucl Mater, 2010,396(2):294.
11Kou H, Luo W, Huang Z, et al. Fabrication and experimental validation of a full-scale depleted uranium bed with thin double-layered annulus configuration for hydrogen isotopes recovery and delivery[J]. Energy, 2015,90(1):588.
12Li G, Zhou H, Gao T. Structural, vibrational and thermodynamic properties of zirconium-cobalt: First-principles study[J]. J Nucl Mater, 2012,424(1-3):220.
13Chattaraj D, Parida S C, Dash S, et al. Structural, electronic and thermodynamic properties of ZrCo and ZrCoH3: A first-principles study[J]. Int J Hydrogen Energy, 2012,37(24):18952.
14Chattaraj D, Parida S C, Dash S, et al. Density functional study of vibrational, thermodynamic and elastic properties of ZrCo and ZrCoX3 (X=H, D and T) compounds[J]. J Alloy Compd, 2015,629:297.
15Nagasaki T, Konishi S, Katsuta H, et al. A zirconium-cobalt compound as the material for a reversible tritium getter[J]. Fus Technol, 1986,9(3):506.
16Konishi S, Nagasaki T, Hayashi T, et al. Equilibrium hydrogen pressure on the solid solutions of ZrCo-HfCo intermetallic compounds[J]. J Nucl Mater, 1995,223(3):300.
17Penzhorn R D, Devillers M, Sirch M. Evaluation of ZrCo and other getters for tritium handling and storage[J]. J Nucl Mater, 1990,170(3):217.
18Devillers M, Sirch M, Bredendiekkaemper S, et al. Characterization of the ZrCo-hydrogen system in view of its use for tritium storage[J]. Chem Mater, 1990,2(3):255.
19Luo D L, Jiang G, Zhu Z H, et al. Quantum mechanical calculation of the adsorption of hydrogen isotopes on metallic zirconium[J]. Acta Phys-Chim Sin, 2001,17(10):913(in Chinese).
罗德礼, 蒋刚, 朱正和, 等. 锆钴合金氢化反应热力学函数的计算[J]. 物理化学学报, 2001,17(10):913.
20Naik Y, Rao G A R, Venugopal V. Zirconium-cobalt intermetallic compound for storage and recovery of hydrogen isotopes[J]. Intermetallics, 2001,9(4):309.
21Guo X M, Wang S M, Liu X P, et al. Hydrogen isotopes absorption/desorption of ZrCo intermetallic compound[J]. Met Funct Mater, 2011,18(5):41(in Chinese).
郭秀梅, 王树茂, 刘晓鹏, 等. ZrCo合金储放氢同位素研究[J]. 金属功能材料, 2011,18(5):41.
22Jat R A, Parida S C, Nuwad J, et al. Hydrogen sorption-desorption studies on ZrCo-hydrogen system[J]. J Therm Anal Calorim, 2013,112(1):37.
23Bloch J, Mintz M H. Kinetics and mechanisms of metal hydrides formation-A review[J]. J Alloy Compd, 1997,253(6):529.
24Bloch J, Brill M, Ben-Eliahu Y, et al. The initial stages of the reaction between ZrCo and hydrogen studied by hot-stage microscopy[J]. J Alloy Compd, 1998,267(1-2):158.
25Batz V, Jacob I, Mintz M H, et al. The hydriding kinetics of massive ZrCo[J]. J Alloy Compd, 2001,325(1-2):137.
26Yun S H, Yun H O, Cho S, et al. A study of the consecutive absorption/desorption cycles of ZrCo-H2 system[J]. IEEE Trans Plasma Sci, 2015,43(7):2218.
27Kou H, Luo W, Huang Z, et al. Effects of temperature and hydrogen pressure on the activation behavior of ZrCo[J]. Int J Hydrogen Energy, 2016,41(25):10811.
28Devillers M, Sirch M, Penzhorn R D. Hydrogen-induced disproportionation of the intermetallic compound ZrCo[J]. Chem Mater, 1992,4(3):631.
29Konishi S, Nagasaki T, Okuno K. Reversible disproportionation of ZrCo under high temperature and hydrogen pressure[J]. J Nucl Mater, 1995,223(3):294.
30Guo X M, Wang S M, Liu X P, et al. Structural characteristics and mechanism of hydrogen-induced disproportionation of the ZrCo alloy[J]. Int J Miner Metall Mater, 2012,19(11):1010.
31Hara M, Okabe T, Mori K, et al. Kinetics and mechanism of hydrogen-induced disproportionation of ZrCo[J]. Fus Eng Des, 2000,49(1):831.
32Bekris N, Besserer U, Sirch M, et al. On the thermal stability of the zirconium/cobalt-hydrogen system[J]. Fus Eng Des, 2000,49:781.
33Bekris N, Sirch M. On the mechanism of the disproportionate of ZrCo hydrides[J]. Clin Chem, 2012,62(1):50.
34Westlake D G. Stoichiometries and interstitial site occupation in the hydrides of ZrNi and other isostructural intermetallic compounds[J]. J Less Common Met, 1980,75(2):177.
35Jacob I, Bloch J M. Interstitial site occupation of hydrogen atoms in intermetallic hydrides: ZrNiHx case[J]. Solid State Commun, 1982,42(8):541.
36Yang S, Aubertin F, Rehbein P, et al. A M?ssbauer spectroscopy study of the system ZrNi-H and ZrCo-H[J]. Z Kristallogr-Cryst Mater, 1991,195(3-4):281.
37Jat R A, Singh R, Parida S C, et al. Determination of deuterium site occupancy in ZrCoD3, and its role in improved durability of Zr-Co-Ni deuterides against disproportionation[J]. Int J Hydrogen Energy, 2014,39(28):15665.
38Tan G, Liu X, Jiang L, et al. Dehydrogenation characteristic of Zr-Hf-Co alloy[J]. J Xi’an Jiaotong University, 2007,41(11):1380.
39Tan G, Liu X, Jiang L, et al. Dehydrogenation characteristic of Zr(1-x)MxCo (M=Hf, Sc) alloy[J]. Trans Nonferr Met Soc China, 2007,17(S):949.
40Huang Z, Liu X, Jiang L, et al. Hydrogen storage properties of Zr1-xTixCo intermetallic compound[J]. Rare Met, 2006,25(S):200.
41Jat R A, Parida S C, Agarwal R, et al. Effect of Ni content on the hydrogen storage behavior of ZrCo1-xNix alloys[J]. Int J Hydrogen Energy, 2013,38(3):1490.
42Jat R A, Singh R, Parida S C, et al. Structural and hydrogen isotope storage properties of Zr-Co-Fe alloy[J]. Int J Hydrogen Energy, 2015,40(15):5135.
43Peng L, Jiang C, Xu Q, et al. Hydrogen-induced disproportionation characteristics of Zr(1-x)Hf(x)Co (x=0, 0.1, 0.2 and 0.3) alloys[J]. Fus Eng Des, 2013,88(5):299.
44Flanagan T B, Noh H, Luo S. The thermodynamic characterization of ZrCo-H, HfCo-H, HfNi-H and Zr1-xHfxNi(Co) slloy-H systems[J]. J Alloy Compd, 2016,677:163.
45Zhao Y, Li R, Tang R, et al. Effect of Ti substitution on hydrogen storage properties of Zr1-xTixCo (x=0, 0.1, 0.2, 0.3) alloys[J]. J Energy Chem, 2014,23(1):9.
46Zhang G H, Sang G. Study on properties of hydrogen storage and hydrogen-induced disproportionation of Zr1-xTixCo alloys[J]. J Funct Mater, 2015,46(S):93(in Chinese).
张光辉,桑革. Zr1-xTixCo合金的储氢性能及抗氢致歧化效应研究[J]. 功能材料, 2015,46(S):93.
47Luo J J, Wang S M, Liu J, et al. Influence of Ti substitution for Zr on hydrogen storage property of ZrNi0.6Co0.4 alloy[J]. Chin J Rare Met, 2013,37(4):521(in Chinese).
罗敬军, 王树茂, 刘晶, 等. Ti部分替代Zr对ZrNi0.6Co0.4合金储氢特性的影响[J]. 稀有金属, 2013,37(4):521.
48Qi Y, Ju X, Wan C, et al. EXAFS and SAXS studies of ZrCo alloy doped with Hf, Sc and Ti atoms[J]. Int J Hydrogen Energy, 2010,35(7):2931.
49Jat R A, Parida S C, Agarwal R, et al. Investigation of hydrogen isotope effect on storage properties of Zr-Co-Ni alloys[J]. Int J Hydrogen Energy, 2014,39(27):14868.
50Zhang G, Sang G, Xiong R, et al. Effects and mechanism of Ti, Ni, Sc, Fe substitution on the thermal stability of zirconium cobalt-hydrogen system[J]. Int J Hydrogen Energy, 2015,40(20):6582.
51Jat R A, Pati S, Parida S C, et al. Synthesis, characterization and hydrogen isotope storage properties of Zr-Ti-Co ternary alloys[J]. Int J Hydrogen Energy, 2017,42(4):2248.
52Wang F, Li R, Ding C, et al. Effect of catalytic Ni coating with different depositing time on the hydrogen storage properties of ZrCo alloy[J]. Int J Hydrogen Energy, 2016,41(39):17421.
53Zhang G H, Sang G. Effects and mechanism of Ti substitution on the ability of anti-disproportionation of zirconium cobalt-hydrogen system[J]. Nucl Power Eng, 2016,37(3):54(in Chinese).
张光辉, 桑革. Ti改性ZrCo贮氚合金的抗氢致歧化机制研究[J]. 核动力工程, 2016,37(3):54.
54Wan J, Li R, Wang F, et al. Effect of Ni substitution on hydrogen storage properties of Zr0.8Ti0.2Co1-xNix (x=0, 0.1, 0.2, 0.3) alloys[J]. Int J Hydrogen Energy, 2016,41(18):7408.
55Kou H, Sang G, Luo W, et al. Comparative study of full-scale thin double-layered annulus beds loaded with ZrCo, Zr0.8Hf0.2Co and Zr0.8Ti0.2Co for recovery and delivery of hydrogen isotopes[J]. Int J Hydrogen Energy, 2015,40(34):10923.
56Kou H, Huang Z, Luo W, et al. Experimental study on full-scale ZrCo and depleted uranium beds applied for fast recovery and delivery of hydrogen isotopes[J]. Appl Energy, 2015,145:27.
57Gleiter H. Nanocrystalline materials[J]. Mater Sci Eng A, 1990,117(2):33.
58Zaluski L, Zaluska A, Str?m-Olsen J O. Nanocrystalline metal hydrides[J]. J Alloy Compd, 1997,253-254(5):70.
59Orimo S I, Fujii H. Effects of nanometer-scale structure on hydriding properties of Mg-Ni alloys: A review[J]. Intermetallics, 1998,6(3):185.
60Fichtner M. Properties of nanoscale metal hydrides[J]. Nanotechnology, 2009,20(20):259.
61Huot J. Nanocrystalline metal hydrides obtained by severe plastic deformations[J]. Metals, 2012,2(4):22.
62Zhu M, Lu Y, Ouyang L, et al. Thermodynamic tuning of Mg-based hydrogen storage alloys: A review[J]. Materials, 2013,6(10):4654.
[1] 闫静,田晓,赵宣,赵丽娟,杨艳春,陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[2] 周超, 王辉, 欧阳柳章, 朱敏. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126.
[3] 黄文成, 张锦国, 袁军, 刘江文. Mg/Nb复合薄膜的结构调控及其对脱氢温度的影响[J]. 《材料导报》期刊社, 2018, 32(7): 1084-1087.
[4] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[5] 王 斌,张乐乐,杜金晶,张 博,梁李斯,朱 军. 电热还原法制备V-Ti-Cr-Fe储氢合金[J]. 《材料导报》期刊社, 2018, 32(10): 1635-1638.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed