Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5053-5061    https://doi.org/10.11896/cldb.19080080
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
再生骨料强化方法研究进展
王雅思1,2,3, 郑建岚1,2,3, 游帆1,2,3
1 福州大学土木工程学院,福州 350108
2 福建江夏学院工程学院,福州 350108
3 福建省环保节能型高性能混凝土协同创新中心,福州 350108
Review on Enhancement Methods of Recycled Aggregate
WANG Yasi1,2,3, ZHENG Jianlan1,2,3, YOU Fan1,2,3
1 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
2 College of Engineering, Fujian Jiangxia University, Fuzhou 350108, China
3 Coordinative Innovation Center for Environmentally Friendly and Energy Saving HPC of Fujian Province, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 6930KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再生骨料混凝土作为新型环保材料,满足节约资源和能源、减少环境污染以及可持续发展战略的要求,是绿色混凝土的主要研究方向和推广方向。再生骨料表面附着老水泥砂浆,表面粗糙、棱角多,并含有大量孔洞以及二次破碎过程产生的微裂纹,与天然骨料相比,再生骨料存在密度低、吸水率大、压碎指标大、坚固性差、离散性大等不足,且再生骨料与其表面附着砂浆间存在薄弱界面区,使再生骨料混凝土的性能受到影响、工程应用受到限制。因此,提高再生骨料性能是再生骨料混凝土研究中的关键问题之一。
传统提高再生骨料混凝土性能的方法主要聚焦在混凝土拌和阶段,通过改善拌和方法、加入矿物掺合料、优化混凝土配合比设计,或通过优化再生骨料级配、降低再生骨料取代率,以弱化再生骨料对再生骨料混凝土性能的不利影响,但本质上并未改善再生骨料的缺陷。而对再生骨料进行强化处理可改善再生骨料的性能。
现有再生骨料强化方法主要从再生骨料表面附着砂浆着手,通过物理、化学或生物方法去除老砂浆或增强老砂浆来提高再生骨料的性能,如机械研磨、火山灰质浆液浸泡、纳米材料改性、二氧化碳强化法等。此外,通过骨料重组法对再生骨料成分进行分类、重组,也可在一定程度上提高再生骨料性能,进而达到改善再生骨料混凝土性能的目的。
本文总结了国内外已有再生骨料强化方法的研究进展,分别介绍了去除老砂浆、增强老砂浆、骨料重组三类再生骨料强化方法及其作用机理,总结分析了再生骨料强化方法的强化效果,提出进一步研究再生骨料强化的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雅思
郑建岚
游帆
关键词:  再生骨料  附着水泥砂浆  强化    
Abstract: Recycled aggregate concrete, as a new environmental protection material, meets the strategy of saving resources and energy, reducing environmental pollution and sustainable development. It is the main research and promotion direction of green concrete. The surface of recycled aggregate is adhered to old cement mortar, rough and angular, and contains a large number of holes and microcracks during secondary crushing. Compared with natural aggregate, recycled aggregate has some shortcomings, such as low density, high water absorption, large crushing index, poor firmness and large dispersion, and there is a weak interface between recycled aggregate and adhered mortar, which affect the performance of recycled aggregate concrete and restrict its application in practical engineering. So improving the performance of recycled aggregate is one of the key problems in the research of recycled aggregate concrete.
The existing methods to improve the performance of recycled aggregate concrete mainly focus on the mixing method, adding mineral admixtures and optimizing the mix of concrete in the mixing stage, or by optimizing the gradation of recycled aggregate and reducing the replacement rate of recycled aggregate to reduce the adverse effect of recycled aggregate. However, the defect of recycled aggregate has not been substantially improved. The performance of recycled aggregate can be improved by enhancement treatments.
The enhancement treatments mainly start with the mortar attached, and remove or enhance the old mortar by physical, chemical or biological methods, so as to enhance the performance of recycled aggregate, such as mechanical grinding, pre-soaking in pozzolanic solution, nanomate-rial slurry, carbonation, et al. In addition, the component recombination method can also improve the performance of recycled aggregates, and thus improve the performance of recycled aggregate concrete.
In this paper, the research progress and their mechanism of each recycled aggregate enhancing methods at home and abroad were summarized, the strengthening effect of enhancement methods were analyzed, and the direction of further research on enhancing of recycled aggregate was put forward.
Key words:  recycled aggregate    adhered cement mortar    enhancement method
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TU528  
基金资助: 国家自然科学基金联合基金重点支持项目(U1605242);福建省自然科学基金项目(2020J01941);福建江夏学院专题研究项目(JXZ2018010)
通讯作者:  jianlan@fzu.edu.cn   
作者简介:  郑建岚,博士,教授,福州大学博士研究生导师,福建江夏学院书记,国家级百千万人才工程人选,福建省杰出科技人才,福建省科技创新领军人才,享受国务院特殊津贴专家,教育部全国高等学校优秀教师。长期从事结构工程与现代混凝土材料研发和培养博士生、硕士生工作。近年来在自密实高性能混凝土及其结构的研究与应用、高强与高性能混凝土及再生骨料混凝土体积稳定性研究与应用、建筑废弃物资源化利用等方面开展了系统深入的工作。获国家技术发明二等奖1项,作为第一完成人获福建省科学技术二等奖4项;主编中国土木工程学会、福建省工程建设等行业标准4个;获国家授权发明专利2项;发表学术论文100余篇并出版专著。
王雅思,2014年6月毕业于福州大学,获得工学硕士学位。现为福州大学土木工程学院博士研究生,在郑建岚教授的指导下进行再生骨料混凝土材料的研究。
引用本文:    
王雅思, 郑建岚, 游帆. 再生骨料强化方法研究进展[J]. 材料导报, 2021, 35(5): 5053-5061.
WANG Yasi, ZHENG Jianlan, YOU Fan. Review on Enhancement Methods of Recycled Aggregate. Materials Reports, 2021, 35(5): 5053-5061.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080080  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5053
1 Dai X M. Concrete,2012(1),1(in Chinese).
戴显明.混凝土,2012(1),1.
2 Geng J, Sun J Y, Mo L W, et al. Journal of Civil, Architectural & Environmental Engineering,2013,35(2),139(in Chinese).
耿健,孙家瑛,莫立伟,等.土木建筑与环境工程,2013,35(2),139.
3 Shi H S, Liu J W, Sun Z P, et al. Cement Engineering,2009(4),68(in Chinese).
施惠生,刘金为.水泥工程,2009(4),68.
4 Li J B, Xiao J Z, Sun Z P. Journal of Building Materials,2005,17(5),395(in Chinese).
李佳彬,肖建庄,孙振平.建筑材料学报,2005,17(5),395.
5 Tam V W Y, Soomro M, Jorge E, et al. Construction & Building Mate-rials,2018,172,290.
6 Kisku N, Joshi H, Ansari M, et al. Construction & Building Materials,2017,131,737.
7 Zhang J X, Zhang J H, Wu C S. Journal of Building Materials,2006,9(2),147(in Chinese).
张金喜,张建华,邬长森.建筑材料学报,2006,9(2),147.
8 Cui Z L, Lu S S, Wang Z S. Journal of Building Materials,2012,15(2),264(in Chinese).
崔正龙,路沙沙,汪振双.建筑材料学报,2012,15(2),264.
9 Poon C S, Shui Z H, Lam L. Construction & Building Materials,2004,18(6),468.
10 Sidorova A, Vazquez-Ramonich E, Barra-Bizinotto M, et al. Construction and Building Materials,2014,68,681.
11 Silva R V, Brito J D, Neves R, et al. Materials Research,2015,18(2),436.
12 Evangelista L, Brito J. Cement and Concrete Composites,2010,32(1),14.
13 Xiao J Z, Lin Z B, Zhu J. Journal of Sichuan University (Engineering Science Edition),2014,46(4),160(in Chinese).
肖建庄,林壮斌,朱军.四川大学学报(工程科学版),2014,46(4),160.
14 Shi C, Li Y, Zhang J, et al. Journal of Cleaner Production,2016,112(1),467.
15 Kong D, Lei T, Zheng J, et al. Construction & Building Materials,2010,24(5),707.
16 Dimitriou G, Savva P, Petrou M. Construction & Building Materials,2018,158,234.
17 Li Q Y, Quan H Z, Qin Y. Performance and application technology of recycled concrete, National Defense China Building Materials Industry Press, China,2010(in Chinese).
李秋义,全洪珠,秦原.再生混凝土性能与应用技术,中国建材工业出版社,2010.
18 Al-Bayati H K A, Das P K, Tighe S L, et al. Construction & Building Materials,2016,112,297.
19 Peng G F, Huang Y Z, Zhang J. Journal of Building Materials,2012,15(1),84(in Chinese).
朋改非,黄艳竹,张九.建筑材料学报,2012,15(1),84.
20 Katz A. Journal of Materials in Civil Engineering,2004,16(6),602.
21 Tam V, Tam C M, Le K N. Resources Conservation & Recycling,2007,50(1),97.
22 Kim Y, Hanif A, Kazmi S M S, et al. Journal of Cleaner Production,2018,191,347.
23 Shayan A, Xu A. Aci Materials Journal,2003,100(5),380.
24 Elhakam A A, Mohamed A E, Awad E. Construction & Building Mate-rials,2012,35,427.
25 Du T, Li H Q, Wu X G. New Building Materials,2002(3),8(in Chinese).
杜婷,李惠强,吴贤国.新型建筑材料,2002(3),8.
26 Cheng H L, Wang C Y. New Building Materials,2004(12),14(in Chinese).
程海丽,王彩彦.新型建筑材料,2004(12),14.
27 Kou S C, Poon C S. Cement and Concrete Composites,2010,32(8),653.
28 Zhang H R, Zhao Y X, Meng T, et al. Journal of Materials in Civil Engineering.2016,28(2),10.
29 Chuah S, Pan Z, Sanjayan J G, et al. Construction and Building Mate-rials,2014,73,121.
30 Xuan D, Zhan B, Chi S P. Cement & Concrete Composites,2016,65,74.
31 Pan G, Zhan M, Fu M, et al. Construction & Building Materials,2017,154,818.
32 Li Y, Pan G H, Fu M H. In: Conference Record of the 7th National Conference on Commercial Mortar. Guangzhou,2017,pp.387(in Chinese).
李阳,潘钢华,付明华.全国商品砂浆学术交流会.广州,2017,pp.387.
33 Grabiec A M, Klama J, Zawal D, et al. Construction & Building Mate-rials,2012,34(34),149.
34 Bui N K, Satomi T, Takahashi H. Construction & Building Materials,2017,148,383.
35 Khoury E, Ambros W, Cazaliu B, et al. Construction & Building Mate-rials,2018,175,712.
36 Gupta A, Mandal S, Ghosh S. Journal of Engineering & Applied Sciences,2012,7(1),106.
37 Wong Y D, Sun D D, Lai D. Waste Management,2007,27(2),300.
38 Qu Z Z. Architecture Technology,2001,32(2),104(in Chinese).
屈志中.建筑技术,2001,32(2),104.
39 Butler L. Evaluation of recycled concrete aggregate performance in structural concrete. Ph.D. Thesis,. University of Waterloo, Canada,2012.
40 Zhang H Y, Sun Z J. Journal of Foshan University,2006,24(2),14(in Chinese).
张华英,孙仲健.佛山科学技术学院学报,2006,24(2),14.
41 Weng Z Y. Experimental study on microstructure of recycled high perfor-mance concrete affected by intensified test. Master’s Thesis, Fuzhou University, China,2013(in Chinese).
翁志英.再生粗骨料强化预处理对高性能再生混凝土细观结构影响的试验研究.硕士学位论文,福州大学,2013.
42 Spaeth V, Djerbi Tegguer A. International Journal of Sustainable Built Environment,2013,2(2),148.
43 Li W G, Long C, Luo Z Y. Journal of Building Materials,2017,20(5),690(in Chinese).
李文贵,龙初,罗智予,等.建筑材料学报,2017,20(5),690.
44 Wang Z F, Zhang J J, Zhan S L, et al. Rare Metal Materials and Engineering,2010(2),413(in Chinese).
王章夫,张津践,詹树林,等.稀有金属材料与工程,2010(2),413.
45 Guo K, Ma H H, Wang Q. Journal of Architecture and Civil Engineering,2018,35(5,224(in Chinese).
郭凯,马浩辉,王强.建筑科学与工程学报,2018,35(5),224.
46 Shao Y X, Monkman Sean, Tran Stanley. Journal of the Chinese Ceramic Society,2010,38(9),1646(in Chinese).
邵一心,Monkman Sean, Tran Stanley.硅酸盐学报,2010,38(9),1646.
47 Abu ZakirMorshed, Yixin Shao. Journal of Sustainable Cement-Based Materials,2013(2),158.
48 Liang C F, Yang J C, Pan Y Q, et al. Journal of Functional Materials,2018,49(11),11050.
梁超锋,杨金城,潘艺倩,等.功能材料,2018,49(11),11050.
49 Hu W. Experimental study of preconditioning by CO2 to improve reinforcement corrosion performance in recycled aggregate concrete. Master’s Thesis, Fuzhou University, China,2017(in Chinese).
胡伟.CO2预处理改善再生混凝土中钢筋锈蚀性能试验研究.硕士学位论文,福州大学,2017.
50 Surong Luo, Shichang Ye, Jianzhuang Xiao, et al. Construction & Bui-lding Materials,2018,188,960.
51 Zhang J, Shi C, Li Y, et al. Construction and Building Materials,2015,98,5.
52 Silva R V, Neves R, Brito J D. Cement & Concrete Composites,2015,62,30.
53 Thiery M, Villain G, Dangla P, et al. Cement and Concrete Research,2007,37(7),1056.
54 Chunxiang Q, Jianyun W, Ruixing W, et al. Materials Science & Engineering C-Biomimetic and Supramolecular Systems,2009,29(4),1278.
55 Wang X M. The effect of separating fly ash on hydration characteristics and microstructure of recycled aggregate concrete. Master’s Thesis, Fuzhou University, China,2017(in Chinese).
王晓敏.分选粉煤灰对再生混凝土水化特性与细观结构的影响研究.硕士学位论文,福州大学,2017.
56 Otsuki N, Miyazato S I, Yodsudjai W. Journal of Materials in Civil Engineering,2003,15(5),451.
[1] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[2] 钱国余, 王志, 孙峙, 刘春伟, 严鹏程. 废旧航空铝材涂层的热分解与成分调控再生[J]. 材料导报, 2021, 35(1): 1023-1029.
[3] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[4] 李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412-417.
[5] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[6] 李太行, 戚承志, 王晓娇, 周理安. 再生建筑骨料添加对城墙土体抗渗性的影响[J]. 材料导报, 2020, 34(Z1): 220-223.
[7] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[8] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[9] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[10] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[11] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[12] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[13] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[14] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[15] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed