Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7127-7138    https://doi.org/10.11896/cldb.20060251
  金属与金属基复合材料 |
金属纳米颗粒的生物合成研究进展
朱菲, 吴祖洁, 程明辉, 管金华, 邹龙
江西师范大学生命科学学院,南昌市鄱阳湖湿地微生物资源与利用重点实验室,南昌 330022
Advances in Biological Synthesis of Metal Nanoparticles
ZHU Fei, WU Zujie, CHENG Minghui, GUAN Jinhua, ZOU Long
Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
下载:  全 文 ( PDF ) ( 2957KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属纳米颗粒(Metal nanoparticles,MNPs)因具有小尺寸、高比表面积、高反应活性及独特的光学、电学、热力学特性,已成为催化、传感器、临床诊断、医学治疗、抗菌剂、环境修复等众多领域研究的热点材料。MNPs的种类、形貌、尺寸及表面功能修饰决定着其性能及应用范畴,开发绿色、简单、可控的MNPs合成方法是当前重要的研究方向。生物学方法合成 MNPs是利用生物体或生物分子对金属离子前体进行还原或者生物矿化,反应条件温和、能耗低,无需昂贵的设备和有害的化学物质,是一种绿色合成方法,已发展为纳米生物技术的一个重要分支。几乎全部类型微生物和各种植物组织均可开发为MNPs合成与加工的“纳米工厂”。细菌、放线菌、酵母和霉菌既可以在细胞内又可以在细胞外合成MNPs,MNPs的合成是生物酶催化的还原反应或者矿化过程,与细胞代谢产生的还原力有关。藻类与植物组织合成MNPs类似,通常是利用其组织提取液中的蛋白质等大分子和多酚类等多种小分子活性成分在细胞外合成MNPs。纳米尺度的病毒可作为MNPs合成与组装的特异性模板。近年来,各种各样的单质金属和金属化合物纳米颗粒的生物合成取得了较大进步,所制备的MNPs在抗菌、催化、传感、生物诊断与生物医药、环境污染物去除等方面得到较好的应用。但是生物合成MNPs仍然面临颗粒形貌、尺寸较难控制,产物不易回收和纯化,大规模生产技术欠缺等问题,因而限制了其产业化应用。本文归纳了不同类型微生物和植物组织提取液合成MNPs的最新进展,总结了MNPs的生物合成机理及应用,分析了生物合成方法面临的主要问题并展望了其未来研究方向,以期为低成本、绿色、可控生物合成MNPs的发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱菲
吴祖洁
程明辉
管金华
邹龙
关键词:  金属纳米颗粒  生物合成  微生物  植物组织液  纳米生物技术    
Abstract: Metal nanoparticles (MNPs) with small size, high area-volume ratio, excellent reactive activation, unique optical, electrical and thermodynamic properties have become a research hotspot as functional materials in many fields such as catalysis, sensors, clinical diagnosis, medicines, antibacterial agents and environmental remediation. The morphology, size and surface functionalization of MNPs play pivotal roles in their application scopes and performances, thus the development of green, simple and controllable synthesis method for MNPs fabrication is of much importance. The biological synthesis of MNPs is a green route, in which biological organisms and biomolecules bio-reduce or bio-mineralize the metal precursors into MNPs. In general, the reaction condition of biological approach is moderate and energy-efficient without need for expensive instruments or harmful chemicals. Nowadays, the biological synthesis of MNPs has developed into an important branch of nanobiotechnology. Almost all types of microorganisms and various plant tissues have promising potential in either synthesis or processing of MNPs as “nano-factories”. Bacteria, actinomycetes, yeast and fungi can produce MNPs both intracellularly and extracellularly. The formation of MNPs is the reduction or mineralization process catalyzed by enzymes, which is usually forced by the reductive force generated by cell metabolism. The synthesis of MNPs by algae and plant tissue generally employ their extracts containing rich biomacromolecules such as proteins and a variety of small molecule active components including polyphenols. Viruses in nanoscale size can be used as unqiue templates for MNPs synthesis and assembly. In recent years, the biosynthesis of various MNPs including metals and their compounds has made great progress, and the bio-MNPs have been showed good application potential in antibacterial agents, catalysis, sensors, biological diagnosis and biomedicine, environmental pollutant removal and other aspects. However, biosynthesis of MNPs is still faced with challenges in control of morphology and nano-size, product recovery and purification, and lack of mass production technology, leading to the limitation in industrial application. This review offers a retrospection of the recent progress of MNPs biosynthesis by various types of microorganisms and plant tissue extracts, and summarizes the biosynthesis mechanism and applications of bio-MNPs. Then the main problems existing in current research are discussed and the future research directions are prospected, so as to provide reference for green biosynthesis of MNPs with low cost and good controllability.
Key words:  metal nanoparticles    biosynthesis    microorganism    plant tissue extract    nanobiotechnology
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  O614  
  Q819  
  R318.08  
基金资助: 国家自然科学基金(31900109);江西省青年科学基金重点项目(20202ACB215001)
作者简介:  朱菲,江西师范大学硕士研究生,主要从事纳米生物材料的研究工作。
邹龙,江西师范大学生命科学学院副教授,硕士研究生导师,2016年6月在西南大学洁净能源科学专业取得博士学位。主要从事纳米生物技术和纳米生物材料的研究工作,在Advanced Energy Materials、Advanced Functional Materials、Journal of Power Sources等期刊发表学术论文20余篇,入选江西省首批培养类“双千计划”-科技创新高端人才。
引用本文:    
朱菲, 吴祖洁, 程明辉, 管金华, 邹龙. 金属纳米颗粒的生物合成研究进展[J]. 材料导报, 2021, 35(7): 7127-7138.
ZHU Fei, WU Zujie, CHENG Minghui, GUAN Jinhua, ZOU Long. Advances in Biological Synthesis of Metal Nanoparticles. Materials Reports, 2021, 35(7): 7127-7138.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060251  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7127
1 Zharov V P, Kim J W, Curiel D T, et al. Nanomedicine-Nanotechnology Biology and Medicine, 2005, 1(4), 326.
2 Gahlawat G, Choudhury A R. RSC Advances, 2019, 9(23), 12944.
3 Mirhendi M, Emtiazi G, Roghanian R. Iet Nanobiotechnology, 2013, 7(4), 135.
4 Zhang X R. Acta Microbiologica Sinica, 2011, 51(3), 297(in Chinese).
张晓蓉. 微生物学报, 2011, 51(3), 297.
5 Park T J, Lee K G, Lee S Y. Applied Microbiology and Biotechnology, 2016, 100(2), 521.
6 Kuppusamy P, Yusoff M M, Maniam G P, et al. Saudi Pharmaceutical Journal, 2016, 24(4), 473.
7 Timoszyk A. Bulletin of Materials Science, 2018, 41(6),154.
8 Yan L, Zhang S, Chen P, et al. Microbiological Research, 2012, 167(9), 507.
9 Hildebrand M, Lerch S J L. Seminars in Cell & Developmental Biology, 2015, 46,27.
10 Beveridge T J, Murray R G. Journal of Bacteriology, 1980, 141(2),876.
11 Southam G, Beveridge T J. Geochimica Et Cosmochimica Acta,1994,58(20),4527.
12 Seku K, Gangapuram B R, Pejjai B, et al. Chemical Papers, 2019, 73(7),1695.
13 Wen L, Lin Z, Gu P, et al. Journal of Nanoparticle Research, 2009, 11(2), 279.
14 Reith F, Etschmann B, Grosse C, et al. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(42), 17757.
15 Zhang H L,Yang J,Zhou H, et al. Chinese Journal of Applied & Environmental Biology, 2019, 25(2),457(in Chinese).
张珩琳, 杨婧, 周浩,等.应用与环境生物学报, 2019, 25(2), 457.
16 Pooley F D. Nature, 1982, 296(5858),642.
17 Klaus T, Joerger R, Olsson E, et al. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24), 13611.
18 Parikh R Y, Singh S, Prasad B L V, et al. Chembiochem, 2008, 9(9),1415.
19 Saravanan M, Barik S K, Mubarakali D, et al. Microbial Pathogenesis, 2018, 116,221.
20 Korbekandi H, Iravani S, Abbasi S. Journal of Chemical Technology and Biotechnology, 2012, 87(7), 932.
21 Mokhtari N, Daneshpajouh S, Seyedbagheri S, et al. Materials Research Bulletin, 2009, 44(6), 1415.
22 Malarkodi C, Rajeshkumar S, Paulkumar K, et al. Drug Invention Today, 2013, 5(2),119.
23 Shahverdi A R, Minaeian S, Shahverdi H R, et al. Process Biochemistry, 2007, 42(5), 919.
24 Ghorbani H R. Asian Journal of Chemistry, 2013, 25(3), 1247.
25 Zhang H R, Li Q B, Lu Y H, et al. Journal of Chemical Technology and Biotechnology, 2005, 80(3), 285.
26 Nair B, Pradeep T. Crystal Growth & Design, 2002, 2(4), 293.
27 Konishi Y, Ohno K, Saitoh N, et al. Journal of Biotechnology, 2007, 128(3), 648.
28 Attard G, Casadesus M, Macaskie L E, et al. Langmuir, 2012, 28(11), 5267.
29 Wu R, Tian X, Xiao Y, et al. Journal of Materials Chemistry A, 2018, 6(23), 10655.
30 Varia J C, Zegeye A, Velasquez-Orta S, et al. Chemical Engineering Journal, 2016, 288, 482.
31 Ahmed E, Kalathil S, Shi L, et al. Journal of Saudi Chemical Society, 2018, 22(8), 919.
32 Lv Q, Zhang B, Xing X, et al. Journal of Hazardous Materials, 2018, 347,141.
33 Song X, Shi X. Applied Surface Science, 2019, 491, 682.
34 Xia Z C, Cheng Y Y, Kong W Q, et al. Process Biochemistry, 2016, 51(3), 408.
35 Vaigankar D C, Dubey S K, Mujawar S Y, et al. Ecotoxicology and Environmental Safety, 2018, 165, 516.
36 Chellamuthu P, Naughton K, Pirbadian S, et al. Frontiers in Microbiology, 2019, 10,938.
37 Xu H, Xiao Y, Xu M, et al. Nanotechnology, 2019, 30(6),065607.
38 Liu J, Zheng Y, Hong Z, et al. Science Advances, 2016, 2(9),e1600858.
39 Han R, Song X, Wang Q, et al. Journal of Chemical Technology and Biotechnology, 2019, 94(10), 3375.
40 Voeikova T A, Shebanova A S, Ivanov Y D, et al. Applied Biochemistry and Microbiology, 2016, 52(8), 769.
41 Yu Y Y, Cheng Q W, Sha C, et al. Chemical Engineering Journal, 2020, 379, 122404 .
42 Xiao X, Liu Q Y, Lu X R, et al. International Biodeterioration & Biodegradation, 2017, 116, 10.
43 Lee J H, Kim M G, Yoo B, et al. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(51), 20410.
44 Xiao X, Ma X B, Yuan H, et al. Journal of Hazardous Materials, 2015, 288, 134.
45 Dong B, Liu G, Zhou J, et al. RSC Advances, 2015, 5(118), 97798.
46 Dundas C M, Graham A J, Romanovicz D K, et al. ACS Synthetic Biology, 2018, 7(12), 2726.
47 Xie J, Chen K, Chen X. Nano Research, 2009, 2(4), 261.
48 Taran M, Rad M, Alavi M. Pharmaceutical Sciences, 2017, 23(3), 198.
49 Ghasemi N, Jamali-Sheini F, Zekavati R. Materials Letters, 2017, 196, 78.
50 Vena M P, Jobbagy M, Bilmes S A. Science of the Total Environment, 2016, 565, 804.
51 Jacob J M, Lens P N L, Balakrishnan R M. Microbial Biotechnology, 2016, 9(1), 11.
52 Bai H J, Zhang Z M, Guo Y, et al. Colloids and Surfaces B-Biointerfa-ces, 2009, 70(1), 142.
53 Yan Z Y, Du Q Q, Qian J, et al. Enzyme and Microbial Technology, 2017, 96, 96.
54 Gong J, Song X, Gao Y, et al. Inorganic and Nano-Metal Chemistry, 2018, 48(2), 96.
55 Qi S, Yang S, Chen J, et al. ACS Applied Materials & Interfaces, 2019, 11(11), 10442.
56 Ordenes-Aenishanslins N, Anziani-Ostuni G, Quezada C P, et al. Frontiers in Microbiology, 2019, 10, 1587
57 Manimaran M, Kannabiran K. Letters in Applied Microbiology, 2017, 64(6), 401.
58 Sivalingam P, Antony J J, Siva D, et al. Colloids and Surfaces B-Bioin-terfaces, 2012, 98, 12.
59 Otari S V, Patil R M, Ghosh S J, et al. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2015, 136, 1175.
60 Wypij M, Golinska P, Dahm H, et al. Iet Nanobiotechnology, 2017, 11(3), 336.
61 Balraj B, Senthilkumar N, Siva C, et al. Research on Chemical Intermediates, 2017, 43(4), 2367.
62 Shaaban M, El-Mahdy A M. Iet Nanobiotechnology, 2018, 12(6), 741.
63 Nabila M I, Kannabiran K. Biocatalysis and Agricultural Biotechnology, 2018, 15, 56.
64 Hassan S E D, Fouda A, Radwan A A, et al. Journal of Biological Inorganic Chemistry, 2019, 24(3), 377.
65 Dameron C T, Reese R N, Mehra R K, et al. Nature, 1989, 338(6216), 596.
66 Lin Z Y, Wu J M, Xue R, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2005, 61(4), 761.
67 Saitoh N, Fujimori R, Nakatani M, et al. Hydrometallurgy, 2018, 181, 29.
68 Sriramulu M, Sumathi S. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9,025018.
69 Agnihotri M, Joshi S, Kumar A R, et al. Materials Letters, 2009, 63(15), 1231.
70 Pimprikar P S, Joshi S S, Kumar A R, et al. Colloids and Surfaces B-Biointerfaces, 2009, 74(1), 309.
71 Seshadri S, Saranya K, Kowshik M. Biotechnology Progress, 2011, 27(5), 1464.
72 Mala J G S, Rose C. Journal of Biotechnology, 2014, 170, 73.
73 Cao K, Chen M M, Chang F Y, et al. Biochemical Engineering Journal, 2020, 156, 107497 .
74 Singh P, Kim Y J, Zhang D, et al. Trends in Biotechnology, 2016, 34(7), 588.
75 Khan A U, Malik N, Khan M, et al. Bioprocess and Biosystems Enginee-ring, 2018, 41(1),1.
76 Ahmad A, Mukherjee P, Senapati S, et al. Colloids and Surfaces B-Biointerfaces, 2003, 28(4), 313.
77 Duran N, Marcato P D, De Souza G I H, et al. Journal of Biomedical Nanotechnology, 2007, 3(2), 203.
78 Vigneshwaran N, Ashtaputre N M, Varadarajan P V, et al. Materials Letters, 2007, 61(6), 1413.
79 Li G Q. Fungus-mediated green synthesis of nano-material using Aspergillus terreus and their applications. Ph.D. Thesis, Jilin University, China, 2012(in Chinese).
李广泉. 土曲霉介导的纳米材料生物还原制备及其应用的研究. 博士学位论文,吉林大学, 2012.
80 Wanarska E, Maliszewska I. Bioorganic Chemistry, 2019, 93, 102803.
81 Janakiraman V, Govindarajan K, Magesh C R. Bionanoscience, 2019, 9(3), 573.
82 Seetharaman P K, Chandrasekaran R, Gnanasekar S, et al. Biocatalysis and Agricultural Biotechnology, 2018, 16, 22.
83 Zhou J Z,Shi C H, Zhu N W. Microbiology, 2018, 45(11), 2387(in Chinese).
周家智, 石超宏, 朱能武.微生物学通报, 2018, 45(11), 2387.
84 Mohamed A A, Fouda A, Abdel-Rahman M A, et al. Biocatalysis and Agricultural Biotechnology, 2019, 19, UNSP 101103 .
85 Uddandarao P, Mohan B R. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2016, 207, 26.
86 Gordon R, Losic D, Tiffany M A, et al. Trends in Biotechnology, 2009, 27(2), 116.
87 Ferreira V D S, Conzferreira M E, Lima L M T R, et al. Enzyme and Microbial Technology, 2017, 97, 114.
88 Arsiya F, Sayadi M H, Sobhani S. Materials Letters, 2017, 186, 113.
89 Mishra V, Arya A, Chundawat T S. Current Organocatalysis, 2020, 7(1), 23.
90 Govindaraju K, Basha S K, Kumar V G, et al. Journal of Materials Science, 2008, 43(15), 5115.
91 Singaravelu G, Arockiamary J S, Kumar V G, et al. Colloids and Surfaces B-Biointerfaces, 2007, 57(1), 97.
92 Rajathi F A A, Parthiban C, Kumar V G, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2012, 99, 166.
93 Rajeshkumar S, Malarkodi C, Gnanajobitha G, et al. Journal of Nanostructure in Chemistry, 2013, 3(1), 44.
94 Arya A, Gupta K, Chundawat T S, et al. Bioinorganic Chemistry and Applications, 2018, 2018, 7879403 .
95 Abboud Y, Saffaj T, Chagraoui A, et al. Applied Nanoscience, 2014, 4(5), 571.
96 Pugazhendhi A, Prabhu R, Muruganantham K, et al. Journal of Photochemistry and Photobiology B-Biology, 2019, 190, 86.
97 El-Kassas H Y, Aly-Eldeen M A, Gharib S M. Acta Oceanologica Sinica, 2016, 35(8), 89.
98 Le D H T, Lee K L, Shukla S, et al. Nanoscale, 2017, 9(6), 2348.
99 Mao C B, Flynn C E, Hayhurst A, et al. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12), 6946.
100 Yang Y. Preparation of CdS nanomaterials by virus- templated and the investigation of their photocatalytic properties. Master’s Thesis, Nor-theast Forestry University, China, 2019(in Chinese).
杨悦. 病毒模板法制备CdS纳米材料及其光催化性能研究. 硕士学位论文, 东北林业大学, 2019.
101 Adigun O O, Retzlaff-Roberts E L, Novikova G, et al. Langmuir, 2017, 33(7), 1716.
102 Zhou J. Controlled synthesis of metal nanomaterials based on octreotide acetate and adenovirus vector .Master’s Thesis, Yanshan University, China, 2014(in Chinese).
周景. 基于醋酸奥曲肽和腺病毒载体控制合成纳米金属材料的研究. 硕士学位论文, 燕山大学, 2014.
103 Tiwari M, Jain P, Hariharapura R C, et al. Process Biochemistry, 2016, 51(10), 1348.
104 Nordmeier A, Merwin A, Roeper D F, et al. Chemosphere, 2018, 203, 521.
105 Pat-Espadas A M, Razo-Flores E, Rangel-Mendez J R, et al. Applied Microbiology and Biotechnology, 2013, 97(21), 9553.
106 Prasad K, Jha A K. Journal of Colloid and Interface Science, 2010, 342(1), 68.
107 Avendano R, Chaves N, Fuentes P, et al. Scientific Reports, 2016, 6, 37155.
108 Hossain A, Hong X, Ibrahim E, et al. Molecules, 2019, 24(12), 2303.
109 Xiao X, Zhu W W, Yuan H, et al. Biochemical Engineering Journal, 2016, 105, 214.
110 De Corte S, Hennebel T, Verschuere S, et al. Journal of Chemical Technology and Biotechnology, 2011, 86(4), 547.
111 Moon J W, Ivanov I N, Joshi P C, et al. Acta Biomaterialia, 2014, 10(10), 4474.
112 Faramarzi S, Anzabiz Y, Jafarizadeh-Malmiri H. Archives of Microbiology, 2020,DOI, 10.1007/s00203-020-01831-0.
113 Noor S, Shah Z, Javed A, et al. Journal of Microbiological Methods, 2020,174, 105966.
114 Jacob J M, Rajan R, Tom T C, et al. Ceramics International, 2019, 45(18), 24193.
115 Akther T, Mathipi V, Kumar N S, et al. Environmental Science and Pollution Research, 2019, 26(13), 13649.
116 Kadam V V, Ettiyappan J P, Balakrishnan R M. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2019, 243, 214.
117 Kalaimurugan D, Sivasankar P, Lavanya K, et al. Journal of Cluster Science, 2019, 30(4), 1071.
118 Diko C S, Zhang H, Lian S, et al. Materials Chemistry and Physics, 2020, 246, 122583.
119 Borah D, Das N, Das N, et al. Applied Organometallic Chemistry, 2020, 34(5),e5597.
120 Wishkerman A, Arad S. In:Conference on Nanotechnology Ⅷ.Barcelona(ES), 2017, pp. 102480W.1-102480W.7.
121 Balaraman P, Balasubramanian B, Kaliannan D, et al. Waste and Biomass Valorization, DOI: 10.1007/s12649-020-01083-5.
122 Adigun O O, Retzlaff-Roberts E L, Novikova G, et al. Langmuir, 2017, 33(7), 1716.
123 Zhou J C, Soto C M, Chen M S, et al. Journal of Nanobiotechnology, 2012, 10, 18 .
124 Yang C, Manocchi A K, Lee B, et al. Journal of Materials Chemistry, 2011, 21(1), 187.
125 Hoag G E, Collins J B, Holcomb J L, et al. Journal of Materials Che-mistry, 2009, 19(45), 8671.
126 Aziz-S B, Hussein G, Brza M A, et al. Nanomaterials (Basel, Switzerland), 2019, 9(11),1557.
127 Ahmad F, Ashraf N, Ashraf T, et al. Applied Microbiology and Biotechnology, 2019, 103(7), 2913.
128 Okaiyeto K, Hoppe H, Okoh A I. Journal of Cluster Science,DOI, 10.1007/s10876-020-01766-y.
129 Maghimaa M, Alharbi S A. Journal of Photochemistry and Photobiology B-Biology, 2020, 204, 111806.
130 Punniyakotti P, Panneerselvam P, Perumal D, et al. Bioprocess and Biosystems Engineering, DOI: 10.1007/s00449-020-02357-x.
131 Liu Y, Huang C, Weng X L, et al. Chinese Journal of Environmental Engineering, 2016, 10(8), 4118(in Chinese).
刘勇, 黄超, 翁秀兰, 等. 环境工程学报, 2016, 10(8), 4118.
132 Verma S K, Nisha K, Panda P K, et al. Science of the Total Environment, 2020, 713, 136521.
133 Renuga D, Jeyasundari J, Athithan A S S, et al. Materials Research Express, 2020, 7(4),045007.
134 Ayodhya D, Veerabhadram G. Journal of Photochemistry and Photobio-logy B-Biology, 2016, 157, 57.
135 Ayodhya D, Veerabhadram G. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, S215.
136 Ahmad N, Sharma S, Alam M K, et al. Colloids and Surfaces B-Bioin-terfaces, 2010, 81(1), 81.
137 Pan Z, Lin Y, Sarkar B, et al. Journal of Colloid and Interface Science, 2020, 558, 106.
138 Kumar S A, Abyaneh M K, Gosavi S W, et al. Biotechnology Letters, 2007, 29(3), 439.
139 Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, et al. Artificial Cells Nanomedicine and Biotechnology, 2017, 45(8), 1588.
140 Ingle A, Gade A, Pierrat S, et al. Current Nanoscience, 2008, 4(2), 141.
141 Karthik L, Kumar G, Kirthi A V, et al. Bioprocess and Biosystems Engineering, 2014, 37(2), 261.
142 Kim T Y, Kim M G, Lee J H, et al. Frontiers in Microbiology, 2018, 9, 2817.
143 Cologgi D L, Lampa-Pastirk S, Speers A M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37), 15248.
144 Kang F, Alvarez P J, Zhu D. Environmental Science & Technology, 2014, 48(1), 316.
145 Raj R, Dalei K, Chakraborty J, et al. Journal of Colloid and Interface Science, 2016, 462, 166.
146 Jayaseelan C, Rahuman A A, Roopan S M, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2013, 107, 82.
147 Kuppusamy P, Mashitah M Y, Maniam G P, et al. Asian Pacific Journal of Tropical Disease, 2014, 4(3),223.
148 Prasad K S, Vaghasiya J V, Soni S S, et al. Applied Biochemistry and Biotechnology, 2015, 177(6), 1386.
149 Srivastava P, Kowshik M. Applied and Environmental Microbiology, 2017, 83(7),e03091.
150 Naz M, Nasiri N, Ikram M, et al. Applied Nanoscience, 2017, 7(8), 793.
151 Gong C P, Li S C, Wang R Y. Journal of Photochemistry and Photobio-logy B-Biology, 2018, 183, 137.
152 Nam K T, Kim D W, Yoo P J, et al. Science, 2006, 312(5775), 885.
153 Murugan M, Miran W, Masuda T, et al. Chemelectrochem, 2018, 5(24), 4015.
154 Tripathi R M, Gupta R K, Bhadwal A S, et al. Iet Nanobiotechnology, 2015, 9(4), 178.
155 Liang M. Zinc sulfide nanoparticles from Pseudomonas putida nm-l exhibiting photocatalytic activities and their applications. Master’s Thesis, Northeast Forestry University, China, 2019(in Chinese).
梁铭. 恶臭假单胞菌nm-1产ZnS纳米颗粒的光催化活性及其应用. 硕士学位论文, 东北林业大学, 2019.
156 Jyoti K, Singh A. Journal of Genetic Engineering & biotechnology, 2016, 14(2), 311.
157 Wang J Y, Pu S Y, Hou G Q. Chinese Journal of Environmental Engineering,2020,14(9),2537(in Chinese).
王嘉瑜, 蒲生彦, 侯国庆.环境工程学报, 2020,14(9),2537.
[1] 吴黎明, 徐进霞, 范志成, 梅菲, 周远明, 刘凌云. Pt对In2O3纳米线场效应晶体管电学性能的影响[J]. 材料导报, 2021, 35(4): 4028-4033.
[2] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[3] 谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
[4] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[5] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[6] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[7] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[8] 荣辉, 魏冠奇, 张磊, 张颖, 徐蕊, 宁彩珍, 王雪平. 微生物胶凝材料固结垃圾焚烧飞灰效果及机制[J]. 材料导报, 2019, 33(22): 3757-3761.
[9] 钱春香, 冯建航, 苏依林. 微生物诱导碳酸钙提高水泥基材料的早期力学性能及自修复效果[J]. 材料导报, 2019, 33(12): 1983-1988.
[10] 许萍, 任恒阳, 魏智刚, 汪长征. 碳钢表面混合与单种细菌腐蚀作用对比研究[J]. 材料导报, 2019, 33(12): 2055-2061.
[11] 李文龙, 薛屏. 微生物燃料电池分隔材料的研究新进展[J]. 《材料导报》期刊社, 2018, 32(7): 1065-1072.
[12] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[13] 徐晶, 王先志. 浸渍及固载法用于混凝土微生物表面处理对比研究[J]. 材料导报, 2018, 32(24): 4276-4280.
[14] 谢飞, 王丹, 吴明, 宗月, 袁世娇, 申红娟, 李睿. 海洋硫酸盐还原菌对Q235钢腐蚀行为的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 51-55.
[15] 徐晶, 王彬彬. 陶粒负载微生物的混凝土开裂自修复研究*[J]. 《材料导报》期刊社, 2017, 31(14): 127-131.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed