Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4028-4033    https://doi.org/10.11896/cldb.19120034
  无机非金属及其复合材料 |
Pt对In2O3纳米线场效应晶体管电学性能的影响
吴黎明1,2,3, 徐进霞1,2,3,4, 范志成1,2,3, 梅菲1,2,3,4, 周远明1,2,3,4, 刘凌云1,2,3,4
1 湖北工业大学太阳能发电及储能运行控制湖北省重点实验室,武汉 430068
2 湖北工业大学太阳能高效利用湖北省协同创新中心,武汉 430068
3 湖北工业大学电气与电子工程学院,武汉 430068
4 湖北工业大学理学院,武汉 430068
Effect of Pt on the Electrical Properties of Indium Oxide Nanowire Field Effect Transistors
WU Liming1,2,3, XU Jinxia1,2,3,4, FAN Zhicheng1,2,3, MEI Fei1,2,3,4, ZHOU Yuanming1,2,3,4, LIU Lingyun1,2,3,4
1 Hubei Key Laboratory of Solar Power Generation and Energy Storage Operation Control, Hubei University of Technology, Wuhan 430068, China
2 Hubei Provincial Collaborative Innovation Center for Efficient Use of Solar Energy, Hubei University of Technology, Wuhan 430068, China
3 School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
4 College of Science, Hubei University of Technology, Wuhan 430068, China
下载:  全 文 ( PDF ) ( 3328KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氧化铟纳米线(In2O3 NWs)因具有合适的禁带宽度、较高的电子迁移率等优异的电学性能,可应用于晶体管、存储器、传感器等而备受关注,成为研究的热点。本实验通过简单易行的化学气相沉积法生长了In2O3纳米线,结合电子束光刻(EBL)成功制备了In2O3纳米线场效应晶体管器件(Field effect transistor,FET),利用溅射系统在In2O3 FET上沉积不同厚度的Pt,研究了Pt纳米颗粒对In2O3 FET电学性能的影响。利用扫描电子显微镜、X射线衍射及光致发光光谱研究了In2O3纳米线的形貌、组成及光学性能;利用X射线光电子能谱分析纳米线的元素化学价态和组成。通过分析沉积Pt前后In2O3纳米线FET的电学性能发现,沉积Pt纳米颗粒后场效应晶体管阈值电压(Vth)有向右偏移的趋势,开关比(Ion/Ioff)有所下降,载流子浓度降低,载流子迁移率增大。晶体管阈值电压(Vth)向右偏移可归因于沉积Pt后金属/半导体接触形成电子转移,此外纳米线的表面缺陷可以充当吸附位点,表面缺陷吸附的氧和水分子将捕获来自纳米线的自由电子,导致表面电子消耗,从而使得载流子浓度降低。研究结果表明,Pt金属纳米颗粒对In2O3纳米线FET的电学性能存在一定的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴黎明
徐进霞
范志成
梅菲
周远明
刘凌云
关键词:  In2O3纳米线FET  阈值电压  Pt金属纳米颗粒  载流子浓度    
Abstract: Indium oxide (In2O3) nanowire has great potential in transistor, storage and sensor applications owing to their suitable band width and high electron mobility. In this article, In2O3 nanowires were fabricated by simple chemical vapor deposition (CVD). Combining with electron beam lithography (EBL), In2O3 FETs (Field effect transistor, FET) were successfully prepared. Then, Pt was deposited on In2O3 FET with different thickness by sputtering system via different deposition time, and the effect of Pt on the electrical property of In2O3 FETs was investigated. The morphology, structure, optical properties and chemical valence of elements and composition of nanowires were characterized by SEM, XRD, PL and XPS. By analyzing the electrical performance of In2O3 FETs before and after Pt deposition, the threshold voltage (Vth) of FETs tends to drift to the right, the Ion/Ioff and carrier concentration are a bit decrease but the carrier mobility is a bit increase. The shift of Vth is attributed to the electron transfer in the metal and semiconductor system. In addition, the surface defects of nanowires act as the adsorption sites can adsorb oxygen and water molecules, which will capture free electrons from the nanowires, results in the decrease of the carrier concentration. The results show that the Pt metal nanoparticles can modulate the electrical properties of In2O3 FETs.
Key words:  In2O3 nanowire FET    threshold voltage    Pt metal nanoparticles    carrier concentration
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TM23  
基金资助: 国家自然科学基金(11305056);太阳能高效利用及储能运行控制湖北省重点实验室开放基金(HBSEES201901)
通讯作者:  xujx@hbut.edu.cn   
作者简介:  吴黎明,2017年9月至今在湖北工业大学攻读硕士学位,从事半导体功能材料及器件研究。
徐进霞,湖北工业大学副教授,硕士研究生导师,博士毕业于武汉大学。主要从事低维半导体材料的设计、制备、改性及相关器件研究。
引用本文:    
吴黎明, 徐进霞, 范志成, 梅菲, 周远明, 刘凌云. Pt对In2O3纳米线场效应晶体管电学性能的影响[J]. 材料导报, 2021, 35(4): 4028-4033.
WU Liming, XU Jinxia, FAN Zhicheng, MEI Fei, ZHOU Yuanming, LIU Lingyun. Effect of Pt on the Electrical Properties of Indium Oxide Nanowire Field Effect Transistors. Materials Reports, 2021, 35(4): 4028-4033.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120034  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4028
1 Duan X F, Niu C M, Sahi V, et al. Nature,2003, 425, 274.
2 Pescaglini A, Biswas S, Cammi D, et al.Physical Chemistry Chemical Physics,2017, 19(21), 14042.
3 Zhou W, Dai X, Lieber C M.Reports on Progress in Physics, 2017, 80(1),016701.
4 Ma R J, Zhao X, Zou X X, et al. Journal of Alloys and Compounds, 2018, 732, 863.
5 Yu Y, Majhi S M, Song H.Procedia Engineering,2016, 168, 227.
6 Lim T, Han J, Seo K, et al.Nanotechnology, 2015, 26(14), 145203.
7 Su M, Yang Z, Liao L, et al.Advanced Science. 2016, 3(9),1600078.
8 Li Q, Lu N, Wang L, et al.Small Methods,2018, 2(4), 1700263.
9 Liu Q, Liu Y, Wu F, et al.ACS Nano, 2018, 12(2), 1170.
10 Chen P,Yin X T, Que W X. In: Abstracts of the 5th Conference on new Generation Solar Cells(Perovskite Solar Cells). Beijing, 2018(in Chinese).
陈鹏,尹行天,阙文修.第五届新型太阳能电池学术研讨会摘要集(钙钛矿太阳能电池篇). 北京, 2018.
11 Zervos M, Vasile E, Vasile E, et al.Nanotechnology, 2017, 28(5), 54004.
12 Zhang Z, Wang S, Ding L, et al.Nano Letters, 2008, 8(11), 3696.
13 Yeom D, Keem K, Kang J, et al.Nanotechnology, 2008, 19, 265202.
14 Lin M C, Chu C J, Tsai L C, et al.Nano Letters, 2007, 7(12), 3656.
15 Ho J C, Yerushalmi R, Jacobson Z A, et al.Nature Materials, 2008, 7(1), 62.
16 Teweldebrhan D, Balandin A A.Applied Physics Letters, 2009, 94(1), 13101.
17 Zou X, Liu X, Wang C, et al.ACS Nano, 2012, 7(1), 804.
18 Zhang H, Meng Y, Song L, et al.Nano Research, 2018, 11(3), 1227.
19 Chang L, Dai C, Wu C.IEEE Electron Device Letters, 2019, 40(4), 534.
20 Peng M, Wu F, Wang Z, et al.Applied Physics Letters, 2019, 114(11), 111103.
21 Li W, Liao L, Xiao X, et al.Nano Research, 2014, 7(11), 1691.
22 Anand K, Kaur J, Singh R C, et al.Chemical Physics Letters, 2017, 682, 140.
23 Feng C, Liu X, Wen S, et al.Vacuum, 2019, 161, 328.
24 Liang C H, Meng G, Lei Y, et al.Advanced Materials, 2001, 13(17), 1330.
25 Wu P, Li Q, Zhao C X, et al.Applied Surface Science, 2008, 255(5), 3201.
26 Hafeez M, Zhai T, Bhatti A S, et al.Crystal Growth & Design, 2012, 12(10),4935.
27 Rumaiz A K, Ali B, Ceylan A, et al.Solid State Communications, 2007, 144(7-8),334.
28 Xu B, Li J, Liu L, et al.Chinese Journal of Catalysis. 2019, 40(5), 713.
29 Park H, Yoon K R, Kim S K, et al.Advanced Electronic Materials, 2016, 2(11), 1600218.
30 Peigney A, Laurent C, Flahaut E, et al.Carbon, 2001, 39(4), 507.
31 Lu G, Mao S, Park S, et al.Nano Research, 2009, 2(3), 192.
32 Li L, Lou Z, Shen G.ACS Applied Materials & Interfaces, 2015, 7(42), 23507.
33 Gu D, Dey S K, Majhi P.Applied Physics Letters, 2006, 89(8), 82907.
34 Yang X, Fu H, Tian Y, et al.Sensors and Actuators B: Chemical, 2019, 296, 126696.
35 Calarco R, Marso M, Richter T, et al.Nano Letters, 2005, 5(5), 981.
36 Wang D, Chang Y, Wang Q, et al.Journal of the American Chemical Society, 2004, 126(37), 11602.
37 Li Q H, Wan Q, Liang Y X, et al.Applied Physics Letters, 2004, 84(22), 4556.
38 Fan Z, Wang D, Chang P, et al.Applied Physics Letters,2004, 85(24), 5923.
39 Abliz A, Huang C, Wang J, et al.ACS Applied Materials & Interfaces, 2016, 8(12), 7862.
[1] 于涵, 何雄, 张孔斌, 何斌, 罗丰, 孙志刚. 锗基半导体器件的界面磁阻效应和体磁阻效应[J]. 材料导报, 2021, 35(2): 2069-2073.
[2] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[3] 谭海军, 何敬文, 裴海睿, 李和平, 张淑芬, 张淑华. 吩噻嗪和吩噁嗪给电子体在染料敏化太阳能电池中的性能对比分析[J]. 材料导报, 2018, 32(15): 2538-2541.
[4] 罗军, 沈晓楠, 庞盼, 廖斌, 吴先映, 张旭. MEVVA离子注入铁镍银对DSSCs光电性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 1-6.
[5] 韩 贵, 陆金花, 王 敏, 李丹阳. 溶胶-凝胶法制备铜锌锡硫材料的研究进展[J]. 材料导报, 2017, 31(1): 10-17.
[6] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed