Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5130-5139    https://doi.org/10.11896/cldb.19090088
  金属与金属基复合材料 |
纳米颗粒对无铅钎料改性的研究进展
李木兰1, 张亮1,2, 姜楠1, 孙磊3, 熊明月1
1 江苏师范大学机电工程学院,徐州 221116
2 哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨 150001
3 南京航空航天大学机电学院,南京 210016
Research Progress of Using Nano-particles to Improve Properties of Lead-free Solders
LI Mulan1, ZHANG Liang1,2, JIANG Nan1, SUN Lei3, XIONG Mingyue1
1 School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
3 College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 28894KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电子器件趋于微型化、多功能化,微电子封装中的焊点与间距互连要求更小,对焊点的可靠性提出了更高的要求,而在电子封装中钎料对焊点可靠性起着至关重要的作用。近年来,人们越来越注重绿色发展理念,对铅的毒性关注度日益增强,并且各国纷纷立法禁止使用含铅钎料,推动了无铅钎料的快速发展。但是,现有无铅钎料均存在成本高、润湿性差、可靠性低等问题。因此,探索并研发性能优异的无铅钎料任重而道远。
目前,许多研究者选择在无铅钎料中添加纳米颗粒以增强复合钎料的综合性能,如金属颗粒、金属化合物颗粒、碳基纳米材料等。研究表明,纳米颗粒的加入可以细化钎料基体组织,抑制金属间化合物(IMC)的生长,提高钎料的力学性能。因此,研发颗粒增强型无铅钎料以改善钎料合金的整体性能成为研究的热点。
本文综合分析了不同类型、不同尺寸、不同含量的纳米颗粒对无铅钎料组织性能的影响与作用机理,综述了添加纳米颗粒对钎料的显微组织、润湿性能、力学性能、蠕变性能、电迁移特性和可靠性的影响。此外,概述了亚微米颗粒对三维封装互连焊点的改性作用。最后,总结了纳米颗粒增强无铅钎料的不足之处,并对其未来发展进行展望,以期为日后研发高性能的颗粒增强型无铅钎料提供基础理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李木兰
张亮
姜楠
孙磊
熊明月
关键词:  电子封装  无铅钎料  纳米颗粒  颗粒增强    
Abstract: As electronic devices tend to be miniaturized and multi-functional, the solder joints and spacing interconnection requirements in microelectronic packaging are smaller, which puts forward higher requirements for the reliability of solder joints, and solder plays a vital role in the reliability of solder joints in electronic packaging. In recent years, individuals pay more attention to the concept of green development and concern about the toxicity of lead, and quite a few countries have legislated to ban the use of lead-containing solder, which has promoted the rapid development of lead-free solder. Neverthelss, there are many problems in lead-free solder, such as high cost, poor wettability and reliability. Therefore, exploring and developing lead-free solders with excellent properties still has a long way to go.
Nowadays, many researchers have chosen to add nano-sized particles in lead-free solder to enhance the comprehensive properties of compo-site solder, such as metal particles, metal compound particles, carbon-based nano-materials and so on. The results show that the addition of nanoparticles can refine the matrix structure, inhibit the growth of intermetallic compound (IMC) and improve the mechanical properties of solder alloys. Thus, the research and development of nanoparticle reinforced lead-free solder to improve the whole performance of the solder alloy has become a hotspot.
In this paper, the effect and mechanism of different types, sizes and contents of nanoparticles on the structure and properties of lead-free sol-der is comprehensively analyzed. Then, the effects of nanoparticles on the microstructure, wetting ability, mechanical performance, creep property, electromigration properties and reliability of the solders are discussed. Additionally, the modificated effect of submicron particles on 3D encapsulation interconnect solder joints is summarized. Finally, the shortcomings and future prospects of reinforced lead-free solder are put forward in order to provide basic theoretical guidance for the future development of particle reinforced lead-free solder with great properties.
Key words:  electronic packaging    lead-free soldering    nanoparticles    particle reinforced
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TG425  
基金资助: 国家自然科学基金(51475220);江苏省“六大人才高峰”(XCL-022);先进焊接与连接国家重点实验室开放课题重点项目(AWJ-19Z04)
通讯作者:  zhangliang@jsnu.edu.cn   
作者简介:  李木兰,2019年6月毕业于江苏师范大学,获得工学学士学位。现为江苏师范大学机电工程学院硕士研究生,在张亮教授的指导下进行研究。目前主要研究领域为微电子封装材料与技术。
张亮,江苏师范大学机电工程学院教授、硕士研究生导师。2006年7月毕业于南昌航空大学,获材料成型与控制工程学士学位,2011年5月毕业于南京航空航天大学,获材料加工工程专业博士学位。2013年4月至2014年7月作为公派访问学者至美国加州大学洛杉矶分校电子薄膜实验室从事访问研修。主要从事电子封装技术、3D封装芯片堆叠、无铅钎料及互连技术、焊点可靠性、钎焊材料与技术等领域的研究。发表论文100余篇,其中SCI收录70余篇。
引用本文:    
李木兰, 张亮, 姜楠, 孙磊, 熊明月. 纳米颗粒对无铅钎料改性的研究进展[J]. 材料导报, 2021, 35(5): 5130-5139.
LI Mulan, ZHANG Liang, JIANG Nan, SUN Lei, XIONG Mingyue. Research Progress of Using Nano-particles to Improve Properties of Lead-free Solders. Materials Reports, 2021, 35(5): 5130-5139.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090088  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5130
1 Jiang N, Zhang L, Liu Z Q, et al. Science and Technology of Advanced Materials,2019,20(1),876.
2 Mehrabi K, Khodabakhshi F, Zareh E, et al. Journal of Alloys and Compounds,2016,688,143.
3 Zhang L, Tu K N. Materials Science and Engineering R: Reports,2014,82,1.
4 Sabri M F M, Shnawah D A, Badruddin I A, et al. Journal of Alloys and Compounds,2014,582,437.
5 Zou C, Gao Y, Yang B, et al. Materials Characterization,2010,61(4),474.
6 Zhao M, Zhang L, Xiong M Y. Materials Review A: Review Papers,2019,33(7),2467(in Chinese).
赵猛,张亮,熊明月.材料导报:综述篇,2019,33(7),2467.
7 Xu G C, Guo F, Wang X, et al. Journal of Alloys and Compounds,2011,509(3),878.
8 Ren G, Wilding I J, Collins M N. Journal of Alloys and Compounds,2016,665,251.
9 Wang J H, Xue S B, Lv Z P, et al. Materials Review A: Review Papers,2019,33(6),2133(in Chinese).
王剑豪,薛松柏,吕兆萍,等.材料导报:综述篇,2019,33(6),2133.
10 Zhang L, Sun L, Guo Y H, et al. Application of Electronic Technique,2015,41(1),12(in Chinese).
张亮,孙磊,郭永环,等.电子技术应用,2015,41(1),12.
11 Zhang L, Tu K N. Materials Science and Engineering R: Reports,2014,82,1.
12 Zhang L, Tu K N, Chen X W, et al. Scientia Sinica Technologica,2016,46(8),767(in Chinese).
张亮,TU K N,陈信文,等.中国科学:技术科学,2016,46(8),767.
13 Dong W, Shi Y, Lei Y, et al. Rare Metal Materials & Engineering,2010,39(10),1759.
14 Sun L, Zhang L, Xu L, et al. Journal of Materials Science: Materials in Electronics,2016,27(7),7665.
15 Sun L, Chen M H, Xie L S, et al. Transactions of the China Welding Institution,2018,39(8),47(in Chinese).
孙磊,陈明和,谢兰生,等.焊接学报,2018,39(8),47.
16 Zhang L, Han J G, Guo Y H, et al. Journal of Materials Science: Mate-rials in Electronics,2015,26(6),3615.
17 Zhang L, Han J G, Guo Y H, et al. Transactions of the China Welding Institution,2013,34(6),65(in Chinese).
张亮,韩继光,郭永环,等.焊接学报,2013,34(6),65.
18 Yang L, Liu H Y, Wu P P. Hot working Technology,2016,45(17),216(in Chinese).
杨莉,刘海祥,吴佩佩.热加工工艺,2016,45(17),216.
19 Jiang N, Zhang L, Xiong M Y, et al. Electronic Components and Mate-rials,2019,38(8),1(in Cinese).
姜楠,张亮,熊明月,等.电子元件与材料,2019,38(8),1.
20 Ge J G,Yang L,Liu H Y, et al. Hot working Technology,2016,45(3),205(in Chinese).
葛进国,杨莉,刘海祥,等.热加工工艺,2016,45(3),205.
21 Shnawah D A, Sabri M F M,Badruddin I A,et al. Journal of Electronic Materials,2013,42(3),470.
22 Haseeb A S M A, Leng T S. Intermetallics,2011,19(5),707.
23 Yang Q, Hu D A, Cheng D H, et al. Journal of Nanchang Hangkong University (Natural Sciences),2017,31(1),55(in Chinese).
杨起,胡德安,程东海,等.南昌航空大学学报(自然科学版),2017,31(1),55.
24 Gain A K, Zhang L. Journal of Materials Science: Materials in Electro-nics,2016,27(1),781.
25 Huang W C, Gan G S, Tang Ming,et al. Journal of Netshape Forming Engineering,2013,5(1),16(in Chinese).
黄文超,甘贵生,唐明,等.精密成形工程,2013,5(1),16.
26 Tay S L, Haseeb A S M A, Johan M R, et al. Intermetallics,2013,33,8.
27 Gain A K, Zhang L. Journal of Materials Science: Materials in Electro-nics,2015,27,3982.
28 Zhu Lu, Yang L, Chen H M, et al. Hot working Technology,2017,46(23),30(in Chinese).
朱路,杨莉,陈慧明,等.热加工工艺,2017,46(23),30.
29 Haseeb A S M A, Leong Y M, Arafat M M. Intermetallics,2014,54,86.
30 Chan Y H, Arafat M M, Haseeb A S M A. Soldering & Surface Mount Technology,2013,25(2),91.
31 Li Y, Chan Y C. Journal of Alloys and Compounds,2015,645,566.
32 Yin L M, Yang Y, Liu L Q, et al. Acta Metallurgica Sinica,2009,45(4),422(in Chinese).
尹立孟,杨艳,刘亮岐,等.金属学报,2009,45(4),422.
33 Zhu L, Yang L, Song B B, et al. Welding & Joining,2017(7),42(in Chinese).
朱路,杨莉,宋兵兵,等.焊接,2017(7),42.
34 Dai J, Liu Z, Yang L, et al. Hot working Technology,2018,47(3),33(in Chinese).
戴军,刘政,杨莉,等.热加工工艺,2018,47(3),33.
35 Zhou S Q, Yang C, Lin S, et al. Materials Science & Engineering A,2019,744,560.
36 Chuang C L, Tsao L C, Lin H K, et al. Materials Science & Engineering A,2012,558,478.
37 Xiang K K, Haseeb A S M A, Arafat M M G Y. In: 4th Asia Symposium on Quality Electronic Design. ASQED 2012. IEEE,2012.
38 Tang Y, Luo S M, Huang W F, et al. Journal of Alloys & Compounds,2017,719,365.
39 Yang L M, Quan S Y, Liu C, et al. Materials Letters,2019,253,191.
40 Yang L, Zhu L, Zhang Y C, et al. Materials Characterization,2019,148,280.
41 Li Y, Luo K, Lim A B Y, et al. Materials Science & Engineering A,2016,669,291.
42 Shen J, Chan Y C. Microelectronics Reliability,2009,49(3),223.
43 Sun Y J, Zhang G J, Zuo C, et al. Key Engineering Materials,2007,4,353.
44 Jr W D C. Materials Science and Engineering : An Introduction. John Wiley & Sons, China,1985.
45 Sharif A, Chan Y C. Thin Solid Films,2006,504(1),431.
46 Zhang L, Liu Z Q, Chen S W, et al. Journal of Alloys and Compounds,2018,750,980.
47 Xiong M Y, Zhang L, Sun L, et al. Vacuum,2019,167,301.
48 Zhang L, Tu K N, Sun L, et al. Journal of Central South University (Science and Technology),2015,46(1),49(in Chinese).
张亮,Tu K N,孙磊,等.中南大学学报(自然科学版),2015,46(1),49.
49 Li X, Ma Y, Zhou W, et al. Materials Science and Engineering: A,2017,684,328.
50 Hu X W, Qiu Y, Jiang X X, et al. Journal of Materials Science: Mate-rials in Electronics,2018,29(18),15983.
51 Tai F, Guo F, Ma L M, et al. Transactions of the China Welding Institution,2010,31(4),81(in Chinese).
邰枫,郭福,马立民,等.焊接学报,2010,31(4),81.
52 Chen G, Peng H, Silberschmidt V V, et al. Journal of Alloys and Compounds,2016,685,680.
53 Du C H, Wang T, Gan G S, et al. Journal of Chongqing University of Technology(Natural Science),2012,26(6),36(in Chinese).
杜长华,王涛,甘贵生,等.重庆理工大学学报(自然科学),2012,26(6),36.
54 Liu P. Study on particle reinforced Sn3.8Ag0.7Cu composite lead free solders. Ph.D Thesis, Tianjin University of Technology, China,2009(in Chinese).
刘平.颗粒增强Sn3.8Ag0.7Cu复合无铅焊料的研究.博士学位论文,天津大学,2009.
55 Tsao L C, Chang S Y, Lee C I, et al. Materials & Design,2010,31(10),4831.
56 Zhao Z, Lei L, Choi H S, et al. Microelectronics Reliability,2016,60,126.
57 Hu T W, Li Y, Chan YC, et al. Microelectronics Reliability,2015,55(8),1226.
58 Fang X B, Liang J S. Hot working Technology,2013,42(13),156(in Chinese).
方喜波,梁静珊.热加工工艺,2013,42(13),156.
59 Wen Y, Zhao X, Chen Z, et al. Journal of Alloys and Compounds,2017,696,799.
60 Ramli M I I, Saud N, Salleh M A A M, et al. Microelectronics Reliability,2016,65,255.
61 Zhao X C, Wen Y N, Li Y, et al. Journal of Alloys and Compounds,2016,662,672.
62 Gu Y, Zhao X, Li Y, et al. Journal of Alloys and Compounds,2015,627,39.
63 Wattanakornphaiboon A, Canyook R, Fakpan K. Science Direct,2018,5(3),9213.
64 Sun R, Sui Y, Qi J, et al. Journal of Electronic Materials,2017,46(7),4197.
65 Zhu Z, Chan Y C, Wu F. In: International Conference on Electronic Packaging Technology. IEEE,2015.
66 Gain A K, Chan Y C. Microelectronics Reliability,2014,54(5),945.
67 Sobhy M, El-Refai A M, Mousa M M, et al. Materials Science and Engineering: A,2015,646,82.
68 Eid E A, Fouda A N, Duraia E S M. Materials Science & Engineering A,2016,657(50),104.
69 Ge J G, Yang L, Xu Z R, et al. Hot working Technology,2015,44(13),176(in Chinese).
葛进国,杨莉,徐珠睿,等.热加工工艺,2015,44(13),176.
70 Yang L, Dai J, Zhang Y C, et al. Journal of Electronic Materials,2015,44(7),2473.
71 Chellvarajoo S, Abdullah M Z, Samsudin Z. Materials & Design,2015,82,206.
72 Li Z H, Tang Y, Guo Q W, et al. Journal of Alloys and Compounds,2019,789,150.
73 Yang L M, Zhang Z F. Journal of Applied Physics,2015,117(1),308.
74 Gao D G, Wang P P, Lv B, et al. Materials Review A: Review Papers,2019,33(3),550(in Chinese).
高党鸽,王平平,吕斌,等.材料导报:综述篇,2019,33(2),550.
75 Shen J, Peng C, Yin H G, et al. Journal of Materials Science: Materials in Electronics,2012,23(9),1640.
76 Shen J, Tang Q, Pu Y, et al. Journal of Materials Science: Materials in Electronics,2013,24(12),4881.
77 Ma L M, Zuo Y, Liu S H, et al. Journal of Alloys and Compounds,2016,657,400.
78 Liu H Y, Yang L, Xu J, et al. Hot Working Technology,2017,46(9),212(in Chinese).
刘海祥,杨莉,徐俊,等.热加工工艺,2017,46(9),212.
79 Zhu Z, Chan Y C, Chen Z, et al. Materials Science and Engineering: A,2018,727,160.
80 Sun H, Chan Y C, Wu F. Materials Science and Engineering: A,2016,656,249.
81 Ma Y, Li X, Yang L, et al. Materials Science and Engineering: A,2017,696,437.
82 Liu X D, Han Y D, Jing H Y, et al. Materials Science and Engineering A,2013,562,25.
83 Xu L Y, Zhang Z K, Jing H Y, et al. Journal of Materials Science: Materials in Electronics,2015,26(8),5625.
84 Han Y D, Gao Y, Zhang S T, et al. Materials Science & Engineering A,2019,761,138051.
[1] 吴黎明, 徐进霞, 范志成, 梅菲, 周远明, 刘凌云. Pt对In2O3纳米线场效应晶体管电学性能的影响[J]. 材料导报, 2021, 35(4): 4028-4033.
[2] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[3] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[4] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[5] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[6] 蔡海华, 程岚, 李智, 陈李, 童晓玲, 代方银. 添食法制备改性蚕丝的研究进展[J]. 材料导报, 2020, 34(23): 23190-23198.
[7] 武伟, 董季玲, 张锦山, 范海兵, 尹坚, 刘洋, 丁皓, 曹鹏军. 功能化磁性纳米颗粒吸附废水中重金属的研究进展[J]. 材料导报, 2020, 34(17): 17124-17131.
[8] 张雪飞, 白景元, 管仁国. 半固态搅拌参数对A356-10%B4Cp复合材料显微组织的影响[J]. 材料导报, 2020, 34(10): 10103-10107.
[9] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[10] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[11] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[12] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[13] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[14] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[15] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed