Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8028-8033    https://doi.org/10.11896/cldb.20010106
  无机非金属及其复合材料 |
乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性
郭翠霞1,2, 吴张永1, 王航1, 朱启晨1, 邹应辉2
1 昆明理工大学机电工程学院,昆明 650500
2 四川轻化工大学机械工程学院,宜宾 644000
Sedimentation Stability, Rheological Properties and Dielectric Properties of Emulsion-based Silicon Carbide Nanometer Working Fluid
GUO Cuixia1,2, WU Zhangyong1,WANG Hang1, ZHU Qichen1, ZOU Yinghui2
1 Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 Faculty of Mechanical Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
下载:  全 文 ( PDF ) ( 6854KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前混粉电火花加工液添加的粉末粒径主要局限于微米级,与工作基液不能形成均匀、稳定的悬浮液。本研究以乳化液为基液,纳米碳化硅粉体(SiC)为分散相,十二烷基苯磺酸钠(SDBS)、羧甲基纤维素钠(CMC)等作分散剂,采用两步法制备了乳液基SiC纳米工作液,研究不同分散条件下SiC粉体在乳化液中的分散行为,分析了乳液基SiC纳米工作液的沉降稳定性、流变性和介电性。结果表明:质量分数为0.3%~0.6%的CMC对SiC纳米粒子的润湿、分散作用显著,而SDBS作用不明显;CMC分别与SDBS、SDS协同作用时,工作液均具有很好的沉降稳定性;当SDBS质量分数为0.3%,CMC为0.3%~0.6%时,工作液黏度呈非线性增加;当CMC质量分数为0.3%,SDBS为0.3%~1.4%时,工作液黏度先增大后快速降低;工作液电导率随CMC、SDBS分散剂质量分数的增加、液体温度的升高而增大。因此,当SiC质量分数为0.3%、添加0.3%~0.5%(质量分数)的CMC和0.3%~0.7%(质量分数)的SDBS,乳液基SiC纳米工作液有较好的沉降稳定性、流变性和介电性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭翠霞
吴张永
王航
朱启晨
邹应辉
关键词:  乳化液  SiC纳米粉体  沉降稳定性  介电性  流变性  电火花线切割    
Abstract: At present, powder mixed electrical discharge machining (PMEDM) is mainly limited in the addition of powder particles size of micron in the working fluid cannot constitute a uniform and stable suspension. Emulsion based SiC nano working fluid is prepared by two-step method by emulsion as base fluid, nano SiC powder as dispersed phase, and SDBS, CMC,etc as dispersants. The dispersion behavior of SiC nanometer powder in the emulsion with different dispersion conditions is studied, which sedimentation stability, rheology and dielectric properties are analyzed. The results show that within the range of the CMC mass fraction of 0.3%—0.6%, the emulsion has a significant effect on the wetting and dispersion stability of SiC nanoparticles, while SDBS has no obvious effect. Under the synergistic effect of CMC and SDBS or SDS, the nano working fluid has good settlement stability. When SDBS mass fraction is 0.3% and CMC is 0.3%—0.6%, the viscosity of working fluid increases nonlinearly. When the CMC mass fraction is 0.3% and SDBS is at 0.3%—1.4%, the viscosity of the nano working fluid increase firstly and then decrease rapidly. The conductivity of the working fluid increases with the increase of the mass fraction of the dispersant and the temperature of the liquid. Therefore, when SiC mass fraction is 0.3%, CMC is at 0.3%—0.5%, and SDBS is at 0.3%—0.7%, the emulsion based SiC nano-working fluid have good sedimentation stability, rheological property and dielectric property.
Key words:  emulsion    SiC nano powder    sedimentation stability    dielectric properties    rheological properties    wire electrical discharge machining
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51165012);四川轻工大学大学生创新训练计划项目(S202010622097)
通讯作者:  zhyongwu63@163.com   
作者简介:  郭翠霞,四川轻化工大学副教授,硕士研究生导师。2018年入学在昆明理工大学机电工程学院攻读博士学位,主要围绕纳米材料,开展电火花线切割加工表面改性基础理论与应用研究。近年来,发表论文20余篇,申请国家发明专利8项,其中授权4项。
吴张永,昆明理工大学机电工程学院功能流体应用与矿山机电工程研究所,所长。1963 年 5 月生,1996 年获机械制造及自动化专业硕士学位,1996 年破格评为高级工程师,2004 年评为教授。主要研究方向为:水基液压传动技术、电液数字控制技术、新型液压介质、元件及系统。近年来,主持及参与完成科研项目 20 余项,发表论文 50 余篇,参编教材 1部、专著 1 部,获云南省科技进步一等奖 1 项、三等奖 2 项,获发明专利13 项、实用新型专利 60 余项。
引用本文:    
郭翠霞, 吴张永, 王航, 朱启晨, 邹应辉. 乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性[J]. 材料导报, 2021, 35(8): 8028-8033.
GUO Cuixia, WU Zhangyong,WANG Hang, ZHU Qichen, ZOU Yinghui. Sedimentation Stability, Rheological Properties and Dielectric Properties of Emulsion-based Silicon Carbide Nanometer Working Fluid. Materials Reports, 2021, 35(8): 8028-8033.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010106  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8028
1 Liu Z D. Aviation Precision Manufacturing Technology,2006,42(6),29(in Chinese).
刘志东.航空精密制造技术,2006,42(6),29.
2 Zhu R H. Preliminary study on preparation technology and properties of functionalized WEDM emulsion. Master's Thesis, Nanjing University of Science and Technology, China,2008(in Chinese).
朱日辉.功能化线切割乳化液制备工艺及性能初步研究.硕士学位论文,南京理工大学,2008.
3 Tahsin Öpöz, Hamidullah Yaşar, Ekmekci N, et al. Journal of Manufacturing Processes,2018,31,744.
4 Ramesh S, Jenarthanan M P, Bhuvanesh K A S. Multidipline Modeling in Materials & Structures,2018,14(3),549.
5 Razak M A, Rani A M A, Saad N M, et al. IOP Conference Series: Materials Science and Engineering,2018,344,012010.
6 Jawahar M, Reddy C S, Srinivas C. Materials Today: Proceedings,2019,19(2),742.
7 Kumar S S, Thrinadh J, Saurav D, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40(7),330.
8 Zhao L, Li L, Wang H C, et al. Surface Technology,2017,46(2),138(in Chinese).
赵林,李丽,王好臣,等.表面技术,2017,46(2),138.
9 Zhao L, Wang H C, Li L, et al. Manufacturing Automation,2015,37(23),35(in Chinese).
赵林,王好臣,李丽,等.制造业自动化,2015,37(23),35.
10 Qi L. Process research on electrical discharge machining with ultrasonic vibration of dielectric fluid. Master's Thesis, Dalian University of Technology,2017,China,2008(in Chinese).
亓立.超声振动工作液复合电火花加工基础工艺的研究.硕士学位论文,大连理工大学,2017.
11 Sahu D R, Mandal A. Matrials and Manufacturing processes,2020,35(4),430.
12 Kim S, Tserengombo B, Choi S H, et al. International Communications in Heat and Mass Transfer,2018,91,95.
13 Ouikhalfan M, Labihi A, Belaqziz M, et al. Journal of Dispersion Science & Technology,2020,41(3),374.
14 Singh K, Sharma S, Gupta S M, et al. Integrated Ferroelectrics,2020,204(1),11.
15 Ghadimi A, Saidur R, Metselaar H S C. International Journal of Heat and Mass Transfer,2011,54(17-18),4051.
16 Wang D M,Quan X J,Li J J. Materials China,2018,37(12),1033(in Chinese).
王东民,全晓军,李金京.中国材料进展,2018,37(12),1033.
17 Hu Z S, Wu Z Y, Mo Z Y, et al. Journal of Engineering Thermophysics,2018,39(6),1205(in Chinese).
胡臻尚,吴张永,莫子勇,等.工程热物理学报,2018,39(6),1205.
18 Esfe M H, Afrand M. Journal of Thermal Analysis and Calorimetry,2019,138(6),4091.
19 Yang P. Cutting fluid and the process parameters of the research. Master's Thesis, Xi'an University of Science and Technology, China,2011(in Chinese).
杨鹏.线切割液的研发及其工艺参数研究.硕士学位论文,西安科技大学,2011.
20 Liu H. Base and application of surfactant, China Petrochemical Press, China,2015(in Chinese).
刘红.表面活性剂基础及应用,中国石化出版社,2015.
21 Haddad Z, Abid C, Oztop H E, et al. International Journal of Thermal Sciences,2014,76,168.
22 Chen W, Wu Z Y, Zhang L Z, et al. Chemical Industry and Engineering Progress,2019,38(6),2665(in Chinese).
陈文,吴张永,张莲芝,等.化工进展,2019,38(6),2665.
23 Shen Z, Zhao Z G, Wang G T. Colloids and surface chemistry, Chemical Industry Press, China,2004(in Chinese).
沈钟,赵振国,王果庭.胶体与表面化学,化学工业出版社,2004.
24 Yang F, Wang J, Lan Q, et al . Chemical Industry and Engineering Progress,2009,21(Z2),1418(in Chinese).
杨飞,王君,蓝强,等.化工进展,2009,21(Z2),1418.
25 Zhang Y N, Liu N, You L T, et al. Chemical Industry and Engineering Progress,2015,34(4),903(in Chinese).
张亚楠,刘妮,由龙涛,等.化工进展,2015,34(4),903.
26 Wang X M, Zhang C N, Gu H C. Chemical Engineer,2007(9),4(in Chinese).
王煦漫,张彩宁,古宏晨.化学工程师,2007(9),4.
27 Hu Z S, Wu Z Y, Mo Z Y, et al. Chemical Industry and Engineering Progress,2017,36(9),3414(in Chinese).
胡臻尚,吴张永,莫子勇,等.化工进展,2017,36(9),3414.
28 Chen Q, Zheng J, Xu Y, et al. Food Hydrocolloids,2018,75,125.
29 Li L J, Sun F J. Materials Reports,2006,20(1),92(in Chinese).
李莉娟,孙凤久.材料导报,2006,20(1) ,92.
[1] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[2] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[3] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[4] 王珩, 陆采荣, 刘伟宝, 梅国兴, 戈雪良, 杨虎. 砂的级配特性对砂浆流变性的影响及预测[J]. 材料导报, 2020, 34(Z2): 255-260.
[5] 侯德华, 张庆, 韩志宇, 张芳超. 基于主成分分析法的乳化沥青残留物综合性能评价[J]. 材料导报, 2020, 34(Z2): 278-282.
[6] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[7] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[8] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[9] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[10] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[11] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[12] 翟莹, 苗苗, 肖立鲜. 锂渣细度对掺减水剂的水泥浆体流变性能的影响[J]. 材料导报, 2020, 34(18): 18056-18059.
[13] 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
[14] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[15] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed