Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8093-8098    https://doi.org/10.11896/cldb.19120243
  金属与金属基复合材料 |
碳微球表面功能化对镁基复合材料的增强作用
金琳1,2, 杨永珍2, 樊建锋2, 许并社2
1 太原理工大学机械与运载工程学院,太原 030024
2 太原理工大学新材料界面科学与工程教育部重点实验室,太原 030024
Influence of Surface Functionalization on Properties of Carbon Microspheres Reinforced Magnesium Composites
JIN Lin1,2, YANG Yongzhen2, FAN Jianfeng2, XU Bingshe2
1 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 6788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米碳材料增强相与镁基体间的两相界面结合程度直接影响着复合材料性能的提高,而使用化学改性法对增强相进行表面功能化可以有效改善两相间的界面结合度。为了进一步研究表面功能化在提升复合材料性能上所起的作用,本研究选用CVD法和水热法制备的碳微球(CVD-CMSs和HT-CMSs)为增强相,一是使用一步改性法(即使用表面活性剂PVP直接处理)对增强相进行表面功能化处理,制备出CVD-CMSs/Mg和HT-CMSs/Mg,考察CMSs上接枝的含氧官能团对表面功能化处理的效果;二是使用两步改性法(即先使用化学沉积法将MgO颗粒裹附到碳球表面,再用PVP进行处理)对增强相HT-CMSs进行功能化处理,并制备出HT-CMSs@MgO/Mg,与HT-CMSs/Mg对比来考察HT-CMSs上负载MgO纳米颗粒的作用。采用傅里叶红外光谱仪、X射线衍射仪、光学显微镜、高分辨透射电子显微镜和拉伸性能测试仪等对复合材料样品的组织、界面结构和力学性能进行表征和分析。结果表明:CMSs上携带的含氧官能团对表面功能化处理的效果以及增强相的分散性都具有积极作用,且经PVP一步改性后制得的复合材料的增强相与基体间有MgO薄膜生成,改善了增强相与基体的相容性;经两步改性后,负载在HT-CMSs表面的MgO纳米颗粒使两相间的MgO膜增厚,进一步提升了两相间的界面结合度,起到有效连接增强相与基体界面的作用,并最终使复合材料的拉伸性能得到提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金琳
杨永珍
樊建锋
许并社
关键词:  碳微球    复合材料  表面功能化  界面结合    
Abstract: The enhanced mechanical properties are influenced by interfacial bonds between carbon nano-material reinforcement and magnesium matrix immediately. Surface functionalization of reinforcement by chemical modification could improve the interface bonds effectively. For research the role of surface functionalization in improving properties of composites deeply, the carbon microspheres (CMSs) which prepared by chemical vapor deposition method (CVD-CMSs) and prepared by hydrothermal method (HT-CMSs) were used as reinforcements in this work. Firstly, one-step modification was used to functionalize the reinforcements respectively, and then the magnesium matrix composites CVD-CMSs/Mg and HT-CMSs/Mg were prepared by spark plasma sintering and hot extrusion. The effect of oxygen functional groups which grafted on CMSs by chemical modification was investigated. Secondly, the HT-CMSs reinforcements were functionalized by two-step modification, after that, the magnesium matrix composites HT-CMSs@MgO/Mg were prepared. The impact of MgO nanoparticles coated on HT-CMSs was investigated by compared with HT-CMSs/Mg. Interface structure and mechanical properties of the samples were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, optical micrographs, high-resolution transmission electron microscopy and tensile testing. The results show that oxygen functional groups of carbon microspheres have positive effects on the surface functionalization and dispersion of reinforcing phase. The MgO films, produced between reinforcement and matrix during their fabrication after one-step modification, are effectively promoting the interface compatibility of two phases. MgO nanoparticles coated on the surface of HT-CMSs by CVD play a bridge role between carbon microspheres and matrix, which is beneficial to increase the thickness of MgO films and improve the tensile property of composites.
Key words:  carbon microspheres    magnesium    composites    surface functionalization    interfacial bonds
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TB33  
基金资助: 国家自然科学基金(U1710118;U1810122);山西省自然科学基金(201801D221139)
通讯作者:  xubs@tyut.edu.cn   
作者简介:  金琳,太原理工大学讲师,新材料界面科学与工程教育部重点实验室博士生,主要研究方向为纳米碳/金属复合材料。
许并社,太原理工大学教授,博士研究生导师,半导体照明关键技术及工艺国家地方联合中心主任、新型薄膜光电材料及器件山西省协同创新中心主任。1994年博士毕业于日本东京大学。主要从事GaN、GaAs基半导体材料及其器件、纳米功能材料制备及其结构与性能关系研究。
引用本文:    
金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
JIN Lin, YANG Yongzhen, FAN Jianfeng, XU Bingshe. Influence of Surface Functionalization on Properties of Carbon Microspheres Reinforced Magnesium Composites. Materials Reports, 2021, 35(8): 8093-8098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120243  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8093
1 Lan J, Yang Y, Li X C. Materials Science and Engineering A,2004,386,284.
2 Cao G, Kobliska J, Konishi H, et al. Metallurgical and Materials Transactions A,2008,39(4),880.
3 Cao G, Konishi H, Li X. Materials Science and Engineering A,2008,486,357.
4 Xu B, Chen P. New Carbon Materials,1996,11(3),4(in Chinese).
许斌,陈鹏.新型炭材料,1996,11(3),4.
5 Wang Y G, Korai Y, Mochida I. Carbon,1999,37(7),1049.
6 Li Q Q, Viereckl A, Rottmair C A, et al. Composites Science and Technology,2009,69,1193.
7 Kondoh K, Threrujirapapong T, Imai H, et al. Composites Science and Technology,2009,69,1077.
8 Bradbury C R, Gomon J K, Kollo L, et al. Journal of Alloys and Compounds,2014,585,362.
9 Huang W, Lin Y, Taylor S, et al. Nano Letters,2002,2,231.
10 So K P, Jeong J C, Park J G, et al. Composites Science and Technology,2013,74,6.
11 Park Y, Cho K, Park I. Procedia Engineering,2011,10,1446.
12 Maqbool A, Hussain M A, Khalid F A, et al. Materials Characterization,2013,86,39.
13 Chen B, Yang J, Zhang Q, et al. Materials & Design,2015,75,24.
14 Yang Y Z, Liu X G, Zhan C Y, et al. Journal of Physics and Chemistry of Solids,2010,71(3),235.
15 Zhao H J, Yang Y Z, Liu X G, et al. China Sciencepaper,2012,7(12),898(in Chinese).
赵慧君,杨永珍,刘旭光,等.中国科技论文,2012,7(12),898.
16 Sevlla M, Fuertes A B. Chemistry,2009,15(16),4195.
17 Zhao H J, Yang Y Z, Liu X G, et al. China Sciencepaper,2012,7(12),898.
18 Serp P, Feurer R, Kalck P, et al. Carbon,2001,39(4),621.
19 Yang Y Z, Liu X G, Guo X M, et al. Journal of Nanoparticle Research,2011,13(5),1979.
20 Jin L, Liu X G, Yang Y Z, et al. Materials Reports B: Research Papers,2010,24(8),21(in Chinese).
金琳,刘旭光,杨永珍,等.材料导报:研究篇,2010,24(8),21.
21 Xu B S, Luo Q P, Yang Y Z. Materials China,2009,28(2),35(in Chinese).
许并社,罗秋苹,杨永珍.中国材料进展,2009,28(2),35.
22 Jin Y Z, Gao C, Hsu W K, et al. Carbon,2005,43(9),1944.
23 Jin L. Study on the preparation and electrochemical properties of Ru/CMSs composites. Master's Thesis,Taiyuan University of Technology, China,2010(in Chinese).
金琳.钌/碳微球复合材料的制备及电化学性能研究.硕士学位论文,太原理工大学,2010.
24 Chang S Y, Lee S W, Kang K M, et al. Materials Transactions,2004,45,488.
25 Ryou J, Hong S. Current Applied Physics,2013,13,327.
26 Yuan Q H, Zeng X S, Liu Y, et al. Carbon,2016,96,843.
27 Jerng S K, Lee J H, Yu D S, et al. The Journal of Physical Chemistry C,2012,116,7380.
28 Zhang D, Zhan Z. Journal of Alloys and Compounds,2016,658,663.
29 Yuan Q H. Preparation and mechanical properties of AZ91 alloy compo-sites reinforced with nano-carbon materials. Master's Thesis, Nachang University, China,2016(in Chinese).
袁秋红.纳米碳材料增强AZ91镁基复合材料制备与性能研究.硕士学位论文,南昌大学,2016.
30 Katsuyoshi K, Hiroyuki F, Junko U, et al. Materials Science and Engineering: A,2010,7(527),4103.
31 Luster J W, Thumann M, Baumann R. Materials Science and Technology,1993,9(10),853.
[1] 张梦杰, 李翔, 乔师帅, 王元, 魏剑. 改性碳纳米管水泥基复合材料热电非平衡融冰性能[J]. 材料导报, 2021, 35(8): 8049-8055.
[2] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[3] 张莲芝, 吴张永, 王庭有, 朱启晨, 郭翠霞, 蔡晓明, 莫子勇. 氧化锆添加量对四氧化三铁基复合材料性能的影响[J]. 材料导报, 2021, 35(6): 6035-6041.
[4] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[5] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[6] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[7] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[8] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[9] 崔俊杰, 郭章新, 朱明, 李永存, 栾云博, 杨强. 表面带金属层的复合材料层合板低速冲击数值模拟[J]. 材料导报, 2021, 35(4): 4150-4158.
[10] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[11] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[12] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[13] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[14] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[15] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed