Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8191-8195    https://doi.org/10.11896/cldb.20030080
  高分子与聚合物基复合材料 |
聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为
赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎
陕西理工大学材料科学与工程学院,矿渣综合利用环保技术国家地方联合工程实验室,汉中 723000
Crystalline Properties and Response Behavior of Polypropylene/Carbon Nanotube Composites to External Field
ZHAO Zhongguo, JIA Xumiao, CHENG Shaohua, WANG Miao, LIANG Panxu, LI Wanshun, JIA Shikui
National and Loal Engineering Laboratory for Slag Comprehensive Utilization and Environment Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
下载:  全 文 ( PDF ) ( 4880KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究通过溶液-熔融共混的方法制备了不同导电填料含量的聚丙烯/碳纳米管(PP/MWCNTs)导电复合材料,通过DSC、SEM和自组装电阻仪详细地研究了PP/MWCNTs导电复合材料的结晶性能与导电性能的关系及其在外场作用下的响应行为。通过溶液-机械共混方式制备的PP/MWCNTs导电复合材料具有较低的导电填料逾渗阈值,约为2.1%(质量分数,下同),并且随着导电填料含量的增加,聚丙烯的导电性能、热力学稳定性和结晶性能显著提高,热力学分解温度从410.1 ℃提高到了435.2 ℃。通过分析PP/MWCNTs导电复合材料在单次循环的温度-电阻响应的数据发现,PP/MWCNTs导电复合材料在25~180 ℃内一直表现为正温度效应(PTC),且最大和最小电阻值基本上未发生明显变化,具有较好的单调性。在多次温度循环实验(25~145 ℃)过程中,复合材料的电阻率表现出良好的重复性和稳定性。此外,对恒温-电阻响应行为数据进行分析发现,导电网络随时间的变化出现破坏与重组的现象,晶体排斥效应起到了主要作用。随着恒温温度的升高,导电网络的重组时间逐渐延长,从大约5 min延长到了15 min。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵中国
贾旭妙
程少华
王渺
梁攀旭
李万顺
贾仕奎
关键词:  多壁碳纳米管  聚丙烯  导电复合材料  温敏行为  导电网络    
Abstract: In this paper, PP/MWCNTs conductive composites with different contents of conductive fillers were prepared through melt blending. The relationship between temperature and conductivity were studied in detail by DSC, SEM and resistance meter. PP/MWCNTs conductive composites prepared by solution-mechanical blending had a low percolation threshold of about 2.1wt%, and with the increase of conductive filler, the thermodynamic stability and crystallization properties of polypropylene were significantly improved, and the thermodynamic decomposition temperature increased from 410.1 ℃ to 435.2 ℃.The analysis of temperature-resistance behavior of PP/MWCNTs conductive composites in single process temperature found that the conductive composites of PP/MWCNTs exhibited PTC effect in the temperature range from 25 ℃ to 180 ℃, and the maximum and minimum resistance values basically did not change, showing good monotonicity. The temperature-resistance behavior of PP/MWCNTs conductive composites exhibited good repeatability and stability in the cyclic process temperature between 25 ℃ and 145 ℃. In addition, in the analysis of resistance change at different heat treatment temperatures, it is found that the conductive network is destroyed and recombined with time going, and the crystal repulsion effect is also discerned. With the increase of the heat treatment temperature, the recombination time of the conductive network increases gradually, from about 5 min to 15 min.
Key words:  MWCNTs    polypropylene    conductive composites    temperature-resistance behavior    conductive network
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TB332  
基金资助: 陕西省教育厅基金(20JK0564)和陕西理工大学人才启动基金(SLGRCQ2001)
通讯作者:  zhaozhongguo@snut.edu.cn   
作者简介:  赵中国,陕西理工大学讲师,2013年9月至2019年7月,在四川大学高分子科学与工程学院获得材料加工专业工学硕士和工学博士学位,毕业后在陕西理工大学任教。在国内外学术期刊发表论文20余篇,其中以第一作者发表SCI论文6篇,发表国际会议论文3篇,申请国家发明专利5项,其中授权3项。主要从事聚合物高性能化以及传感器应用的研究。参与了多项国家自然基金、横向项目以及中英建桥项目研究工作。
引用本文:    
赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
ZHAO Zhongguo, JIA Xumiao, CHENG Shaohua, WANG Miao, LIANG Panxu, LI Wanshun, JIA Shikui. Crystalline Properties and Response Behavior of Polypropylene/Carbon Nanotube Composites to External Field. Materials Reports, 2021, 35(8): 8191-8195.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030080  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8191
1 Shi Y D, Yu H O, Li J, et al. Chemical Engineering Journal,2018,347,472.
2 Liu Y F, Feng L M, Chen Y F, et al. Composites Science & Technology,2018,159,152.
3 Ren Q B, Wang J P, Yang L, et al. Materials Reports A:Review Papers,2020,34(1),1080(in Chinese).
任秦博,王景平,杨立,等.材料导报:综述篇,2020,34(1),1080.
4 Miller C L, Stafford G, Sigmon N, et al. IEEE Transactions on Nano Bioscience,2019,18,1.
5 Jiang Q Y, Li J S, Liao X. Polymer Materials Science and Engineering,2019,35(8),42(in Chinese).
蒋秋月,李浚松,廖霞.高分子材料科学与工程,2019,35(8),42.
6 Lu X, Hu X N, He Y X, et al. Chinese Journal of Materials Research,2012,26(1),37(in Chinese).
陆昶,胡小宁,赫玉欣,等.材料研究学报,2012,26(1),37.
7 Pan Y, Li L, Chan S H, et al. Composites Part A: Applied Science and Manufacturing,2010,41(3),419.
8 Wu P, Yang Q, Zhao Z Z, et al. Polymer,2019,161,109.
9 Liao M Y, Li X, Xu Y, et al. China Synthetic Resin and Plastics,2002,19(2),4(in Chinese).
廖明义,李雪,许岩,等.合成树脂及塑料,2002,19(2),4.
10 Shen L, Xu J W, Yi X S. Acta Materiae Compositae Sinica,2001,18(3),18(in Chinese).
沈烈,徐建文,益小苏.复合材料学报,2001,18(3),18.
11 Yang B, Chen G S, Li J, et al. Acta Materiae Compositae Sinica,2009,26(4),47(in Chinese).
杨波,陈光顺,李姜,等.复合材料学报,2009,26(4),47.
12 Feng J, Chan C M. Conductive Polymers & Plastics,1999,43(5),219.
13 Kirkpatrick S. Review of Modern Physics,1973,45(4),574.
[1] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[2] 罗大军, 秦舒浩, 伍剑明, 李杨, 高进. 聚丙烯/乙烯-乙烯醇共聚物中空纤维及其硬弹性行为[J]. 材料导报, 2020, 34(Z2): 534-538.
[3] 卢京宇, 王林, 雍涵, 王佩勋, 李超. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 618-622.
[4] 张楠. P(AN-co-DAC)/mt-PSA共混物的吸湿性研究[J]. 材料导报, 2020, 34(Z1): 548-551.
[5] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[6] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[7] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[8] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[9] 林欢, 寇爱静, 张建伦, 董华. 电流热退火效应对碳纤维导热性能的影响[J]. 材料导报, 2020, 34(14): 14198-14203.
[10] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[11] 周颖, 郭建兵, 何玮頔, 徐定红, 王蒙. 紫外老化对长玻纤增强聚丙烯复合材料流变性能和非等温结晶动力学的影响[J]. 材料导报, 2020, 34(12): 12146-12151.
[12] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[13] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[14] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[15] 董小花, 程亮, 陈春彩, 朱贤方. 均匀电子束辐照诱导多壁碳纳米管非晶化[J]. 材料导报, 2019, 33(24): 4031-4034.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed