Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8196-8200    https://doi.org/10.11896/cldb.20010121
  高分子与聚合物基复合材料 |
石墨炭纳米颗粒改性聚砜支撑层制备正渗透复合膜
姚子成, 肖方锟, 刘兆峰, 张大鹏, 朱桂茹
中国海洋大学化学化工学院,青岛 266100
Polysulfone Supporting Layer Modified by Graphite Carbon Nanoparticles to Fabricate TFC Membrane for Forward Osmosis Application
YAO Zicheng, XIAO Fangkun, LIU Zhaofeng, ZHANG Dapeng, ZHU Guiru
College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
下载:  全 文 ( PDF ) ( 14004KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 正渗透膜分离技术是以膜两侧的渗透压差作为驱动力,因此能耗低,符合绿色节约型社会的发展需求。然而,主流的聚酰胺复合膜在正渗透过程中存在内浓差极化现象,使其水通量远小于理论值。因此,改性正渗透复合膜减小其内浓差极化以提高水通量,对促进正渗透技术大规模应用具有重要的意义。本研究采用相转化法制备了掺杂石墨炭纳米颗粒的聚砜支撑层,通过间苯二胺和均苯三甲酰氯在支撑层表面进行界面聚合制备了聚酰胺薄层复合膜(Thin-film composite, TFC)。采用扫描电子显微镜和接触角分析仪对聚砜支撑层和TFC复合膜进行表征,观察膜表面形貌和亲水性,考察不同石墨炭纳米颗粒添加量对正渗透膜性能的影响。结果表明:在基膜中掺杂石墨炭纳米颗粒会使基膜表面孔隙率增大,表面亲水性增强,结构参数减小,这表明内浓差极化得到有效的改善。当石墨炭纳米颗粒添加量为0.01%(质量分数)时,水通量在活性层朝向汲取液(AL-DS)时达到22.4 L/(m2·h),相比未改性的正渗透膜增加了96.7%,这表明新型石墨炭材料可以有效地提高聚酰胺复合膜的正渗透分离性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚子成
肖方锟
刘兆峰
张大鹏
朱桂茹
关键词:  石墨炭纳米颗粒  聚砜基膜  聚酰胺复合膜  正渗透  水通量    
Abstract: Forward osmosis (FO) membrane-based separation process forced by the osmotic pressure, is particularly attractive due to the lower energy consumption. The polyamide thin-film composite (TFC) membrane has achieved a dominant position in FO field. However, internal concentration polarization (ICP) is a serious challenge in the TFC FO membrane which causes the experimental water flux significantly lower than the theoretical value. Therefore, modification of the polyamide TFC membrane to reduce the ICP will be necessary to enhance the separation perfor-mance of FO. In this study, polysulfone (PSF) supporting membrane doped with graphite carbon nanoparticles was prepared by phase conversion method. Polyamide active layer was prepared via interfacial polymerization of m-phenylenediamine and trimesoyl chloride on the PSF surface of supporting layer to fabricate the thin-film composite (TFC) membrane. Scanning electron microscope and contact angle analyzer were used to characterize the PSF supporting membrane and TFC membrane. The results showed that the hydrophilicity and surface porosity of the graphite carbon nanoparticles incorporated PSF membrane was enhanced; the phenomenon of internal concentration polarization was abate; the corresponding permeability was improved and water flux increased. When the additional amount of graphite carbon nanoparticles was 0.01wt%, the water flux with the active layer toward the draw solution (AL-DS) reached 22.4 L/(m2·h), which increased by 96.7% compared with the unmodified FO membrane. It indicated that the new graphite carbon nanoparticles can effectively improve the forward osmosis separation performance of polyamide composite membrane.
Key words:  graphite carbon nanoparticles    polysulfone (PSF) supporting membrane    polyamide thin-film composite (TFC) membrane    forward osmosis    water flux
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TQ028  
基金资助: 中央高校基本科研业务费专项(201964020);国家自然科学基金(U1607124)
通讯作者:  zhugr@ouc.edu.cn   
作者简介:  姚子成,2015年6月毕业于山东科技大学,获得工学学士学位。于2016年9月至2019年6月在中国海洋大学攻读化学工程硕士学位,主要从事聚酰胺正渗透复合膜功能化的研究。
朱桂茹,博士,中国海洋大学化学化工学院教授。2007年毕业于中国科学院大连化学物理研究所。同年加入中国海洋大学化学化工学院工作至今,主要从事聚酰胺复合膜改性及其在正渗透和反渗透领域的应用、铀和锂资源提取的研究。
引用本文:    
姚子成, 肖方锟, 刘兆峰, 张大鹏, 朱桂茹. 石墨炭纳米颗粒改性聚砜支撑层制备正渗透复合膜[J]. 材料导报, 2021, 35(8): 8196-8200.
YAO Zicheng, XIAO Fangkun, LIU Zhaofeng, ZHANG Dapeng, ZHU Guiru. Polysulfone Supporting Layer Modified by Graphite Carbon Nanoparticles to Fabricate TFC Membrane for Forward Osmosis Application. Materials Reports, 2021, 35(8): 8196-8200.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010121  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8196
1 Cath T Y, Childress A E, Elimelech M. Journal of Membrane Science,2006,281(1),70.
2 Lutchmiah K, Verliefde A R D, Roest K, et al. Water Research,2014,58,179.
3 Suwaileha W, Pathakb N, Shonb H, et al. Desalination,2020,485,114455.
4 Petrotos K B, Quantick P C, Petropakis H. Journal of Membrane Science,1999,160(2),171.
5 Yang Q, Wang K Y, Chung T S. Separation and Purification Technology,2009,69(3),269.
6 Nayak C A, Rastogi N K. Separation and Purification Technology,2010,71(2),144.
7 Tang W L, Ng H Y. Desalination,2008,224(1),143.
8 Wei J, Liu X, Qiu C Q, et al. Journal of Membrane Science,2011,381(1),110.
9 Ghosh A K, Hoek E M V. Journal of Membrane Science,2009,336(1),140.
10 Amini M, Jahanshahi M, Rahimpour A. Journal of Membrane Science,2013,435,233.
11 Han G, Zhang S, Li X, et al. Chemical Engineering Science,2012,80,219.
12 Loeb S, Titelman L, Korngold E, et al. Journal of Membrane Science,1997,129(2),243.
13 Yip N Y, Tiraferri A, Phillip W A, et al. Environmental Science & Technology,2010,44(10),3812.
14 Widjojo N, Chung T S, Weber M, et al. Chemical Engineering Journal,2013,220,15.
15 Wang K Y, Chung T S, Amy G. AICHE Journal,2012,58(3),770.
16 Ghanbari M, Emadzadeh D, Lau W J, et al. Desalination,2015,371,104.
17 Song X J, Wang L, Mao L L, et al. ACS Sustainable Chemistry & Engineering,2016,4,2990.
18 Tian M, Wang Y N, Wang R, et al. Desalination,2017,401,142.
19 Ma D, Han G, Peh S B, et al. Industrial & Engineering Chemistry Research,2017,56,12773.
20 Sirinupong T, Youravong W, Tirawat D, et al. Arabian Journal of Che-mistry,2018,11,1144.
21 Zhang X, Shen L, Guan C Y, et al. Journal of Membrane Science,2018,564,328.
22 Darabi R R, Peyravi M, Jahanshahi M, et al. Korean Journal of Chemical Engineering,2017,34,2311.
23 Qiu M, Wang J X, He C J. Desalination,2018,433,1.
24 Akther N, Phuntsho S, Chen Y, et al. Journal of Membrane Science,2019,584,20.
25 Kwon S J, Park S H, Park M S, et al. Journal of Membrane Science,2017,544,213.
[1] 孙娜,王铎,汪锰. 正渗透膜材料及其制备方法的研究进展[J]. 材料导报, 2019, 33(17): 2966-2975.
[2] 王辉, 崔梦冰, 闫冬冬, 陈改荣. 添加剂对聚丙烯腈膜结构和性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 555-558.
[3] 赵曼, 张慧峰, 张雨山, 黄海, 魏杨扬. 碳纳米管的性能及其在海水淡化膜分离材料中的应用*[J]. 《材料导报》期刊社, 2017, 31(3): 116-122.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed