Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12146-12151    https://doi.org/10.11896/cldb.18120157
  高分子与聚合物基复合材料 |
紫外老化对长玻纤增强聚丙烯复合材料流变性能和非等温结晶动力学的影响
周颖1,2, 郭建兵1,2, 何玮頔1,2, 徐定红1,2, 王蒙3
1 国家复合改性聚合物材料工程技术研究中心,贵阳 550058
2 贵州大学材料与冶金学院,贵阳 550025
3 华南理工大学材料科学与工程学院,广州 510641
Effect of Ultraviolet Aging on Rheological Properties and Non-isothermal Crystallization Kinetics of LGFPP Composites
ZHOU Ying1,2, GUO Jianbing1,2, HE Weidi1,2, XU Dinghong1,2, WANG Meng3
1 National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550058,China
2 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
3 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
下载:  全 文 ( PDF ) ( 3406KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过熔融共混法制备长纤维增强聚丙烯复合材料,采用流变测试和差示扫描量热分析研究了不同紫外老化时间下复合材料的流变性能、结晶行为以及非等温结晶动力学。结果表明:紫外老化过程中PP树脂发生氧化降解,纤维与基体的界面过渡层被强化,界面性能恶化,最终导致复合材料的储能模量、损耗模量以及复数黏度降低,损耗因子上升;随老化时间的延长复合材料的起始结晶温度(To)和结晶温度(Tc)呈上升趋势,老化400 h时,复合材料的结晶度(Xc)达到最大值(38.2%);老化产生的降解小分子能够起到成核剂作用加速PP的结晶,半结晶时间t1/2缩短,同时老化过后Avrami指数n降低明显,晶体生长方式以三维球晶为主,并趋向于异相成核。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周颖
郭建兵
何玮頔
徐定红
王蒙
关键词:  紫外老化  长玻璃纤维  聚丙烯  流变  结晶动力学    
Abstract: In this paper, the long glass fiber reinforced polypropylene (LGFPP) composites were prepared by melt blending method. The effects of UV aging on the rheological properties, crystallization behaviors and non-isothermal crystallization kinetics of LGFPP composites with different aging times were investigated using rheological testing (DRA) and differential scanning calorimetry (DSC). The results show that during UV aging, PP resin is degraded by oxidation which leads to reinforcement of the transition layer and the decrease of interfacial properties between fiber and matrix deteriorates. As a result, storage modulus, loss modulus and complex viscosity of the composites decreases, and the loss factor increases; To and Tc of the composites show an upward trend with aging time and the Xc reaches a maximum value of 38.2% after 400 h aging; the small molecules produced during UV aging can act as nucleating agents to accelerate the crystallization of PP, then t1/2 declines. At the same time, The Avrami exponent n decreases obviously after aging and the crystal growth mode is dominated by three-dimensional spherulites.
Key words:  UV aging    long glass fiber    polypropylene    rheology    crystallization kinetics
                    发布日期:  2020-05-29
ZTFLH:  TQ325.14  
基金资助: 贵州省科学技术项目(黔科合支撑 2017/2304,黔科合成果2020/2Y009, 2017/4760);贵州省高层次人才项目(黔科合人才 2016/5667;黔科合平台人才2017/5623);贵阳市白云区科技计划项目(白科合2018/3;2018/10)
通讯作者:  guojianbing_1015@126.com   
作者简介:  周颖,2013年6月毕业于贵州大学矿业学院,获得工程硕士学位。现工作于国家复合改性聚合物材料工程技术研究中心, 助理研究员。目前主要研究领域为复合材料的结构与性能。
郭建兵,国家复合改性聚合物材料工程技术研究中心研究员成果转化与技术服务中心副主任。2004年7月本科毕业于齐齐哈尔大学化工学院,2007年6月在贵州大学材料与冶金学院取得硕士学位。从事复合材料结构与性能的研究工作,获贵州省人民政府津贴,入选贵州省 “百人计划”项目,获贵州省科技进步二等奖1项,三等奖2项。近年来,在复合材料结构与性能领域发表论文数十余篇,包括Polymer Compo-sites、Macromolecular Science Part B、Polymer Engineering & Science和International Materials Review等。
引用本文:    
周颖, 郭建兵, 何玮頔, 徐定红, 王蒙. 紫外老化对长玻纤增强聚丙烯复合材料流变性能和非等温结晶动力学的影响[J]. 材料导报, 2020, 34(12): 12146-12151.
ZHOU Ying, GUO Jianbing, HE Weidi, XU Dinghong, WANG Meng. Effect of Ultraviolet Aging on Rheological Properties and Non-isothermal Crystallization Kinetics of LGFPP Composites. Materials Reports, 2020, 34(12): 12146-12151.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120157  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12146
1 Guo J B, Zhang K Z, Zhang D H, et al. Advanced Materials Research,2013,93,652.
2 Kumar K S, Bhatnagar N, Ghosh A K. Journal of Reinforced Plastics & Composites,2007,26,239.
3 Thomason J L. Composites Part A Applied Science & Manufacturing,2007,38,210.
4 Vahabi H, Sonnier R, Ferry L. Polymer International,2015,64,313.
5 Man C, Zhang C, Liu Y, et al. Polymer Degradation & Stability,2012,97,856.
6 Ramanavicius A, Ryskevic N, Oztekin Y, et al. Analytical and Bioanalytical Chemistry,2010,398,3105.
7 Yakimets I, Lai D, Guigon M. Polymer Degradation & Stability,2004,86,59.
8 Kaczmarek H, O?dak D, Malanowski P, et al. Polymer Degradation & Stability,2005,88,189.
9 Bárány T, Földes E, Czigány T, et al. Journal of Applied Polymer Science,2004,91,3462.
10 Jonsson J, Ranby B, Laurent C, et al. IEEE Transactions on Dielectrics and Electrical Insulation,1996,3,148.
11 Diepens M, Gijsman P. Polymer Degradation & Stability,2007,92,397.
12 He C F, Cao X X, Sun D X, et al. Polymer Materials Science & Engineering,2015,31(7),92(in Chinese).
贺超峰,曹新鑫,孙得翔,等.高分子材料科学与工程,2015,31(7),92.
13 Xie H, Lai X, Zhou R, et al. Polymer Degradation & Stability,2015,118,167.
14 Yao H W, Zhong S G, Li X H, et al. Journal of Materials engineering,2016,44(12),13(in Chinese).
姚红伟,钟盛根,李显华,等.材料工程,2016,44(12),13.
15 Zhang C, Xu Z W, Guo X F. Acta Materiae Compositae Sinica,2018,35(11),2994(in Chinese).
张策,徐志伟,郭兴峰.复合材料学报,2018,35(11),2994.
16 Zhang D H, He M, Qin S H, et al. Polymer Composites,2018,39,794.
17 Wang J, Hu X Y, Zheng Q, et al. Polymer Materials Science & Enginee-ring,2016(32),92(in Chinese).
王君,胡孝迎,郑强,等.高分子材料科学与工程,2016(32),92.
18 Jiang T, Liu M, Peng F, et al. Polymer Engineering & Science,2009,49,1366.
19 Zeng J B, Srinivansan M, Li S L, et al. Industrial & Engineering Chemistry Research,2011,50,4471.
20 Mandelkern L, Keith H D. Journal of Thermal Analysis & Calorimetry,1964,17,52.
21 Jeziorny A. Polymer,1978,19,1142.
22 Ozawa T. Polymer,1971,12,150.
23 Liu T, Mo Z, Wang S, et al. Journal of Applied Polymerence,1997,37,568.
24 Kissinger H E. Analytical Chemistry,1957,29,1702.
25 Liu F Y, Xu C L, Zeng J B, et al. Thermochimica Acta,2013,568,38.
[1] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[2] 汪德才, 郝培文, 乐金朝, 孙杨, 张庆. 冷再生用乳化沥青残留物的流变特性[J]. 材料导报, 2020, 34(6): 6081-6087.
[3] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[4] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[5] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[6] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[7] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[8] 郭增革, 张斌, 姜兆辉, 贾曌, 丁作伟, 程博闻, 李鑫. 压力流场中含炭黑聚对苯二甲酸乙二醇酯熔体的流变特性[J]. 材料导报, 2020, 34(2): 2159-2162.
[9] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[10] 温彦凯, 郭乃胜, 王淋, 顾威, 尤占平. 泡沫温拌沥青胶浆的流变特性及微观机制分析[J]. 材料导报, 2020, 34(10): 10052-10060.
[11] 吕文强, 辛勇. 聚碳酸酯/聚对苯二甲酸丁二醇酯共混物形态结构对微结构注塑制品性能的影响[J]. 材料导报, 2020, 34(10): 10201-10205.
[12] 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
[13] 胡志德, 赵湖钧, 王大伟. 羰基铁粉对锂基磁流变脂动态流变行为的影响[J]. 材料导报, 2019, 33(Z2): 630-633.
[14] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[15] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed