Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6081-6087    https://doi.org/10.11896/cldb.19030191
  无机非金属及其复合材料 |
冷再生用乳化沥青残留物的流变特性
汪德才1,2, 郝培文3, 乐金朝1, 孙杨1, 张庆4
1 郑州大学水利与环境学院,郑州 450000;
2 河南省交通科学技术研究院有限公司,郑州 450006;
3 长安大学特殊地区公路工程教育部重点实验室,西安 710064;
4 河南师范大学化学化工学院,新乡 453007
Rheological Properties of Emulsified Asphalt Residue for Cold Regeneration
WANG Decai1,2, HAO Peiwen3, YUE Jinchao1, SUN Yang1, ZHANG Qing4
1 School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450000, China;
2 Henan Transportation Science and Technology Research Institute Co., Ltd., Zhengzhou 450006, China;
3 Key Laboratory of Highway Engineering in Special Region of Ministry of Education, Chang'an University, Xi'an 710064, China;
4 College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
下载:  全 文 ( PDF ) ( 3780KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为深入认识冷再生用乳化沥青材料特性及其残留物作用机制,采用动态剪切流变试验和重复蠕变试验,在高温蒸发方式和低温蒸发方式两种不同条件下制备乳化沥青残留物。并通过变化乳化剂种类、用量以及添加改性剂方式改变材料组成,结合方差分析,探析不同材料组成及制备方法对乳化沥青残留物流变性能的影响。试验结果表明:乳化剂种类、用量及制备方式对乳化沥青残留物高温流变性能有显著影响;残留物车辙因子与温度呈幂函数关系,高温蒸发下改性乳化沥青残留物车辙因子变化特征与普通乳化沥青残留物存在明显差异,而低温蒸发条件下变化特征与普通乳化沥青残留物相一致,高温蒸发条件会降低乳化沥青残留物PG分级温度;高温蒸发条件下改性乳化沥青残留物第1s加载阶段表现为非规则曲线变化特征的粘弹性流体特性,这与低温蒸发条件下改性乳化沥青残留物的流变特性并不一致;普通乳化沥青残留物同一蒸发条件下采用车辙因子与蠕变柔量评价其高温性能具有良好的一致性。本研究提出改性乳化沥青残留物获取应采用低温蒸发方法,高温性能评价指标应采用蠕变柔量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪德才
郝培文
乐金朝
孙杨
张庆
关键词:  冷再生  乳化沥青残留物  获取方法  流变  评价    
Abstract: In order to deeply understand the characteristics of emulsified asphalt material for cold recycling and the mechanism of its residue action, dynamic shear rheological test and repeated creep test were adopted. Emulsified asphalt residues were prepared under two different conditions of a high-temperature evaporation mode and a low-temperature evaporation mode. The material composition was changed by changing the type and dosage of emulsifier and adding modifier. Combined with variance analysis, the influence of different material composition and preparation methods on the rheological properties of emulsified asphalt residue was analyzed. The test results show that the type, dosage and preparation method of emulsifier have significant influence on the rheological properties of emulsified asphalt residue at high temperature. The rutting factor of residue shows a power function relation with temperature. The variation characteristics of rutting factor of modified emulsified asphalt residue under high-temperature evaporation are obviously different from that of common emulsified asphalt residue, while the variation characteristics under low-temperature evaporation are consistent with that of common emulsified asphalt residue, and the PG classification temperature of emulsified asphalt residue will be reduced under high-temperature evaporation. The modified emulsified asphalt residue presents the viscoelastic fluid characteristic of irregular curve change in the 1st loading stage, which is inconsistent with the rheological characteristic of the modified emulsified asphalt residue under the condition of low temperature evaporation. The rutting factor and creep compliance are used to evaluate the high temperature performance of common emulsified asphalt residue under the same evaporation condition, which has good consistency. In this study, it is proposed that low-temperature evaporation method should be used to obtain the residue of modified emulsified asphalt, and creep compliance should be used as the high-temperature performance evaluation index.
Key words:  cold regeneration    emulsified asphalt residue    acquisition method    rheology    evaluation
                    发布日期:  2020-03-12
ZTFLH:  U414  
基金资助: 国家自然科学基金青年基金(51708513)
作者简介:  汪德才,2017年毕业于长安大学公路学院,获得道路与铁道工程专业工学博士学位,目前在郑州大学博士后流动站从事路面材料与结构方面的研究。
引用本文:    
汪德才, 郝培文, 乐金朝, 孙杨, 张庆. 冷再生用乳化沥青残留物的流变特性[J]. 材料导报, 2020, 34(6): 6081-6087.
WANG Decai, HAO Peiwen, YUE Jinchao, SUN Yang, ZHANG Qing. Rheological Properties of Emulsified Asphalt Residue for Cold Regeneration. Materials Reports, 2020, 34(6): 6081-6087.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030191  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6081
1 Gingras J P, Fradette L, Tanguy P, et al. Industrial & Engineering Chemistry Research, 2007, 46 (6),1818.
2 Banerjee A,Smit A D F,Prozzi J A.Construction and Building Materials,2012,27 (1), 158.
3 Chompoorat T,Likitlersuang S.Ksce Journal of Civil Engineering,2016,20 (7),1.
4 Ma L X. Research on the viscoelastic properties of asphalt and asphalt mixture in the process of ageing. Master's Thesis, Wuhan University of Technology, China,2012 (in Chinese).
马莉骍. 沥青及沥青混合料老化过程中的粘弹性能研究.硕士学位论文,武汉理工大学,2012.
5 Islam R M, Ashani S S, Wasiuddin N M, et al. Journal of Testing & Evaluation, 2015, 43 (5),1134.
6 Marasteanu M O, Clyne T R. Journal of Materials in Civil Engineering, 2006,18 (3), 398.
7 Pang J Y, Du S J, Chang R T, et al. Journal of Applied Polymer Science, DOI.org/10.1002/app.41806.
8 Chang R T,Du S J, Pei Q, et al. Journal of Chongqing Jiaotong University (Natural Sciences), 2016,35 (5),38 (in Chinese).
畅润田,杜素军,裴强,等. 重庆交通大学学报 (自然科学版),2016,35 (5),38.
9 Gao X W, Pang J Y. Journal of Chang'an University (Natural Science Edition), 2018,38 (4),21 (in Chinese).
高新文,庞瑾瑜.长安大学学报 (自然科学版),2018,38 (4),21.
10 Cui D X, Pang J Y. Journal of China & Foreign Highway, 2015,35 (6),229 (in Chinese).
崔东霞,庞瑾瑜.中外公路,2015,35 (6),229.
11 Wang D C. Design method and performance improvement of emulsified asphalt cold recycled mixture. Ph.D.Thesis, Chang'an University, China, 2017 (in Chinese).
汪德才.乳化沥青冷再生混合料配合比设计方法及性能优化研究. 博士学位论文,长安大学,2017.
12 Zhang X N. Viscoelastic mechanics theory and application of asphalt and asphalt mixture, China Communications Press, China, 2006 (in Chinese).
张肖宁.沥青与沥青混合料的粘弹力学,人民交通出版社,2006.
13 Zhou Q H, Jia Y. Journal of Chang'an University (Natural Science Edition), 2008 (2),9 (in Chinese).
周庆华,贾渝.长安大学学报 (自然科学版),2008 (2),9.
14 Zhou Q H, Sha A M. Journal of Traffic and Transportation Engineering, 2008 (1), 27.
周庆华,沙爱民.交通运输工程学报,2008 (1),27.
15 Zhang X N, Meng Y J, Zou G L. Journal of South China of University,2008,36 (2),22 (in Chinese).
张肖宁,孟勇军,邹桂莲.华南理工大学学报,2008,36 (2),22.
16 Wang L, Chang C Q, Xing Y M. Journal of Building Materials,2014,17 (4),721 (in Chinese).
王岚,常春清,邢永明.建筑材料学报,2014,17 (4),721.
[1] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[2] 张娜, 韩筱玉, 梁金生, 李艳, 孟军平, 张红. 非金属矿物材料脱霉性能评价方法研究进展[J]. 材料导报, 2020, 34(5): 5078-5084.
[3] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[4] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[5] 郭增革, 张斌, 姜兆辉, 贾曌, 丁作伟, 程博闻, 李鑫. 压力流场中含炭黑聚对苯二甲酸乙二醇酯熔体的流变特性[J]. 材料导报, 2020, 34(2): 2159-2162.
[6] 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
[7] 汪源, 汪苏平, 张亚利, 纪宪坤. 混凝土增粘剂的制备及应用性能研究[J]. 材料导报, 2019, 33(Z2): 283-287.
[8] 胡志德, 赵湖钧, 王大伟. 羰基铁粉对锂基磁流变脂动态流变行为的影响[J]. 材料导报, 2019, 33(Z2): 630-633.
[9] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[10] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[11] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[12] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[13] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[14] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[15] 田世伟, 江海涛, 刘继雄, 张贵华, 徐哲. 钛钢复合板双金属的流变行为及轧制制备[J]. 材料导报, 2019, 33(24): 4141-4146.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed