Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4141-4146    https://doi.org/10.11896/cldb.18120063
  金属及金属基复合材料 |
钛钢复合板双金属的流变行为及轧制制备
田世伟1, 江海涛1, 刘继雄2, 张贵华1, 徐哲3
1 北京科技大学工程技术研究院,北京 100083
2 宝钛集团有限公司,宝鸡 721014
3 中国船舶工业综合技术经济研究院,北京 100081
Rheological Behavior and Hot Rolling Process of Titanium/Steel Clad Plate
TIAN Shiwei1, JIANG Haitao1, LIU Jixiong2, ZHANG Guihua1, XU Zhe3
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083
2 Baoti Group Ltd., Baoji 7210143 China Institute of Marine Technology & Economy, Beijing 100081
下载:  全 文 ( PDF ) ( 3086KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 基于采用单轴压缩实验得到的钛钢双金属流动变形规律,对钛钢复合板进行了不同工艺的轧制及热处理,并系统分析了不同工艺下钛钢复合板的微观组织、界面特征以及力学性能。结果表明,随着钛钢厚度比的增大、变形温度的升高,双金属流动性差异增大;根据应力-应变曲线,采用Le-venberg-Marquardt法建立了变形抗力预测模型,预测应力值与实测应力值拟合优度为0.961;钛钢复合板在800~900 ℃进行大压下量轧制得到的板材力学性能最优。在750 ℃下进行热处理时,界面处TiC层较厚且厚度不均匀;在850 ℃下进行热处理时,界面处TiC层平直且厚度均匀。在950 ℃下进行热处理后,界面化合物以TiFe为主,TiC分布于TiFe两侧且呈分层分布。同时,铁素体基体出现TiC沿晶界、晶内析出现象,增大冷却速度可对析出物的尺寸进行控制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田世伟
江海涛
刘继雄
张贵华
徐哲
关键词:  钛钢复合板  双金属流动  流变曲线  轧制及热处理  碳化钛析出    
Abstract: Based on the flow deformation rule of titanium/steel clad plate obtained by uniaxial compression tests, hot rolling and heat treatment were conducted on the titanium/steel clad plates under diverse process conditions. Further, the microstructure, interface features and mechanical properties of titanium/steel clad plate treated by different processes were studied systematically. As could be seen from the results, the increase of the thickness ratio and deformation temperature enlarged the difference of the two metal in flowability during the deformation process. According to the stress-strain curve, the prediction model of deformation resistance was established by adopting Levenberg-Marquardt method, and its goodness-of-fit with the measured stress value was 0.961. The titanium/steel clad plate achieved optimal mechanical property under the condition of large reduction within 800 ℃ to 900 ℃. When the heat treatment was carried out at 750 ℃, there existed thick and nonuniform TiC layer at the interface of titanium/steel clad plate. While the TiC layer at interface turned straight and uniform after heat treatment under 850 ℃. The interface layer was further dominated by TiFe, and TiC was distributed on both sides of TiFe, showing a stratified distribution after heat treatment under 950 ℃. Meanwhile, the precipitate of TiC appears along the grain boundary or within the ferrite matrix, and the size of precipitations which could be controlled by raising the cooling rate.
Key words:  titanium/steel clad plate    bimetallic flow    rheological curve    rolling and heat treatment    precipitation of TiC
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TB741  
基金资助: 国家重点研发计划(2016YFB0101606)
作者简介:  田世伟,2015年6月毕业于北京科技大学,获得学士学位。2015年9月至今在北京科技大学工程技术研究院攻读材料科学与工程博士学位,参与一系列国家重点研发计划,目前主要从事先进材料的组织表征及力学性能研究;江海涛,北京科技大学研究员,博士研究生导师。2006年至今在北京科技大学高效轧制国家工程研究中心(北京科技大学工程技术研究院)工作,主要从事钢铁、有色金属材料的品种开发及板带生产技术研究。在研国家自然科学基金、国家重点研发计划、北京市科技计划项目十余项,发表学术论文二百余篇。
引用本文:    
田世伟, 江海涛, 刘继雄, 张贵华, 徐哲. 钛钢复合板双金属的流变行为及轧制制备[J]. 材料导报, 2019, 33(24): 4141-4146.
TIAN Shiwei, JIANG Haitao, LIU Jixiong, ZHANG Guihua, XU Zhe. Rheological Behavior and Hot Rolling Process of Titanium/Steel Clad Plate. Materials Reports, 2019, 33(24): 4141-4146.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120063  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4141
1 Meng K, Zhang Y, Zhang Z. Journal of Materials Processing Technology, 2018, 262, 471.2 Hang S U, Luo X, Feng C, et al. Journal of Iron and Steel Research, International, 2015, 22(11),977.3 Jiang H T, Xu H H. Rare Metal Materials and Engineering, 2016, 45(12), 3192(in Chinese).江海涛, 徐惠惠.稀有金属材料与工程, 2016, 45(12), 3192.4 Zeng Z Y, Wang G L, Jiang S, et al. Wide and Heavy Plate, 2016(5), 6(in Chinese).曾周燏, 王光磊, 江姗, 等. 宽厚板, 2016 (5),6.5 Bi Z Y, Yang J, Tian L, et al. Materials Review, 2016, 30(S2), 558(in Chinese).毕宗岳, 杨军, 田磊, 等.材料导报, 2016, 30(专辑28), 558.6 Yongqiang D, Guangmin S, Lijing Y. Rare Metal Materials and Engineering, 2015, 44(5), 1041.7 Li X B, Li X H, Li M, et al. Transactions of Materials and Heat Treatment, 2017, 38(10), 35(in Chinese).李雪波, 李小红, 李敏, 等.材料热处理学报, 2017, 38(10), 35.8 Balasubramanian M. Transactions of Nonferrous Metals Society of China, 2015, 25(9), 2932.9 Prasanthi T N, C Sudha R, Saroja S. Materials & Design, 2016, 93, 180.10 Yu C, Zhao Y P, Xu P P, et al. Iron and Steel, 2018, 53(11), 93(in Chinese).余超, 赵云鹏, 许朋朋, 等.钢铁, 2018, 53(11), 93.11 Gao Y, Nakata K, Nagatsuka K, et al. Materials & Design, 2015, 65, 17.12 Wang T, Zhang F, Li X, et al. Journal of Materials Processing Technology, 2018, 261, 24.13 Spirdione J, Visser W, Maciejewski K, et al. Materials Science and Engineering: A, 2017, 679, 446.14 Bao R Q, Huang X, Huang L J, et al. Journal of Materials Engineering, 2003 (12), 3(in Chinese).鲍如强, 黄旭, 黄利军, 等.材料工程, 2003 (12), 3.15 Chen M S, Yuan W Q, Lin Y C, et al. Vacuum, 2017, 146, 142.16 Jiang H T, Tian S W, Guo W Q, et al. Materials Science and Enginee-ring: A, 2018, 719, 104.17 Zhou J H, Guan K Z. Metal plastic deformation resistance, Mechanical Industry Press, China, 1989(in Chinese).周纪华, 管克智. 金属塑性变形阻力, 机械工业出版社, 1989.18 Velmurugan C, Senthilkumar V, Sarala S, et al. Journal of Materials Processing Technology, 2016, 234, 272.19 Morizono Y, Nishida M, Chiba A, et al. Materials Science Forum, 2004, 465, 373.
No related articles found!
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed