Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8049-8055    https://doi.org/10.11896/cldb.20020035
  无机非金属及其复合材料 |
改性碳纳米管水泥基复合材料热电非平衡融冰性能
张梦杰1, 李翔1,2, 乔师帅1, 王元1, 魏剑1
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 中交高新科技产业发展有限公司,西安 710065
Non-equilibrium Thermoelectric Deicing Performance of Modified Carbon Nanotube Cement-based Composites
ZHANG Mengjie1, LI Xiang1,2, QIAO Shishuai1, WANG Yuan1, WEI Jian1
1 College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 CCCC High Technology Industry Development Co. Ltd, Xi'an 710065, China
下载:  全 文 ( PDF ) ( 7828KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用压制成型及浇筑成型相结合的方式,制备了平板状热电水泥基复合材料融冰实验模块。通过恒流电源与数据记录仪组成的测试装置监测了室温下单块模块两侧以及水泥基复合材料融冰模块两侧的温度变化及电压变化,研究了水泥基复合材料两侧的温度随通电电流大小及通电时间的变化规律,计算了试样两侧的平均温差以及额定时间内所产生的焦耳热。随着通电电流逐渐变大,两侧升温速率逐渐加快,温差也逐渐增大。水泥基复合材料(N型半导体)中的电子载流子随着电场强度的递增,其在电场中的迁移越发明显,即帕尔贴效应逐渐增强。由于水泥基复合材料与环境之间存在热交换,遂其表面温度存在上限。于冰箱中模拟了融冰实验,当通电电流分别为1.0 A、2.0 A、3.0 A时,冰块完全融化的温度虽有所差别,但实测的融冰时间与预测值基本一致。当通电电流为3 A时,正负极两侧的融冰时间相差23 min。因此,温差路面的研究对路面融冰技术的发展具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张梦杰
李翔
乔师帅
王元
魏剑
关键词:  平板状热电水泥基复合材料  表面温度分布  融冰实验  焦耳热    
Abstract: Combining compression molding and pouring molding, flat decing module of thermoelectric cement-based composite material was prepared, which overcame the defect of breaking due to thermal stress, expands the heat transfer surface of the composite material and strengthens the thermoelectric core. The temperature changes and voltage changes on both sides of a single module and flat cement-based composite mate-rials at room temperature were monitored through a test device composed of a constant current power supply and a data recorder. The variation law of the temperature on both sides of the cement-based composite material with the energized current and the energized time was studied, and the average temperature difference between the two sides of the sample and the Joule heat generated within the rated time were calculated. As the energizing current gradually increased, the heating rate on both sides gradually increased, and the temperature difference also gradually increased. As the electric field strength increases, the migration of electron carriers became more apparent in cement-based composite materials (N-type semiconductors), that enhanced the Peltier effect. Due to the heat exchanged between the cement-based composite material and the environment, there was an upper limit to its surface temperature. The ice-melting experiment was simulated in the refrigerator. When the energized currents were 1.0 A, 2.0 A, and 3.0 A, the final temperature of ice melting was different, but the measured ice melting time was basically consis-tent with the predicted value. When the energizing current was 3 A, the ice melting time on both sides of the positive and negative electrodes differed by 23 min. Therefore, the study of “temperature difference pavement” had certain guiding significance for the development of pavement ice melting technology.
Key words:  flat thermoelectric cement-based composite    surface temperature distribution    ice melting experiment    Joule heating
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TB332  
基金资助: 国家自然科学基金面上项目(51578448, 51308447);陕西省自然科学基础研究计划重大基础研究项目(2017ZDJC-18);留学人员科技活动择优资助项目(陕人社函[2016]789号);陕西省教育厅科学研究计划协同创新中心项目(20JY042)
通讯作者:  weijian@xauat.edu.cn   
作者简介:  张梦杰,2017年6月毕业于山东理工大学,材料学专业。现就读于西安建筑科技大学,攻读工程硕士学位,主要从事热电水泥基复合材料的相关研究。
魏剑,西安建筑科技大学材料科学与工程学院,副院长,纳米材料研究所,所长。2008年毕业于西北工业大学材料学院,博士研究生。主要从事于导电/热电水泥基复合材料、锂电池材料、导电/纳米纤维与膜材料、低维纳米材料规模制备技术的研究。出版高等学校规划教材2部,发表学术论文50余篇,WOS他引超过540次,第一/通信作者在国际著名期刊发表论文32篇(其中,SCI论文26篇,一区论文11篇,单篇最高SCI他引60次),申请和授权发明专利20项。
引用本文:    
张梦杰, 李翔, 乔师帅, 王元, 魏剑. 改性碳纳米管水泥基复合材料热电非平衡融冰性能[J]. 材料导报, 2021, 35(8): 8049-8055.
ZHANG Mengjie, LI Xiang, QIAO Shishuai, WANG Yuan, WEI Jian. Non-equilibrium Thermoelectric Deicing Performance of Modified Carbon Nanotube Cement-based Composites. Materials Reports, 2021, 35(8): 8049-8055.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020035  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8049
1 Wang L X. Application research of road deicing fluid in cold area. Master's Thesis, Harbin Institute of Technology, China,2005(in Chinese).
王丽勋.寒冷地区道路除冰液的应用研究.硕士学位论文,哈尔滨工业大学,2005.
2 Xiang W S. Study on the causes and mechanisms of urban ice and snow road traffic accidents. Master's Thesis, Harbin Institute of Technology, China,2010(in Chinese).
相文森.城市冰雪道路交通事故成因及发生机理研究.硕士学位论文,哈尔滨工业大学,2010.
3 Ding Y H, Wang Z Y, Song Y F, et al. Journal of Meteorology,2008,66(5),158(in Chinese).
丁一汇,王遵娅,宋亚芳,等.气象学报,2008,66(5),158.
4 Mensah K, Choi J M. Journal of Mechanical Science and Technology,2015,29(12),5507.
5 Katarzyna Zwarycz. Geothermal Training Program,2002,11(2),431.
6 Sekioka M. Geothermics,1990,19(2),223.
7 Yehia S A. ACI Materials Journal,1999,96(3),382.
8 Yehia S, Tuan C. Transportation Research Record,2000,1698(1),45.
9 Dawson A, Mallick R, Hernandez A G, et al. 2014,204,481.
10 Tang Z Q, Li Z Q, Qian J S. Journal of Building Materials,2004,7(2),215(in Chinese).
唐祖全,李卓球,钱觉时.建筑材料学报,2004,7(2),215.
11 Wei X D. Application aesearch of carbon fiber conductive concrete in pavement structure. Master's Thesis, Zhejiang University, China,2010(in Chinese).
魏晓冬.碳纤维导电混凝土在路面结构中的应用研究.硕士学位论文,浙江大学,2010.
12 Liu J G. Study on the application of three-phase composite conductive concrete to melting snow and ice on roads and bridges. Master's Thesis, Chang'an University, China,2014(in Chinese).
刘建国.三相复合导电混凝土用于道路及桥面融雪化冰的研究.硕士学位论文,长安大学,2014.
13 Zhou C X. Research on application technology of rubber granular asphalt mixture in ice and snow area. Ph.D. Thesis, Harbin Institute of Technology, China,2006(in Chinese).
周纯秀.冰雪地区橡胶颗粒沥青混合料应用技术的研究.博士学位论文,哈尔滨工业大学,2006.
14 Wu X W. Preparation and structural design of snow melting and deicing anti-sliding pavement materials. Master's Thesis, Wuhan University of Technology, China,2009(in Chinese).
吴学伟.融雪除冰抗滑路面材料制备及结构设计.硕士学位论文,武汉理工大学,2009.
15 Yao L L. Research on key technologies of elastic deicing pavement of rubber particles. Ph.D. Thesis, Chang'an University, China,2012(in Chinese).
姚莉莉.橡胶颗粒弹性除冰路面关键技术研究.博士学位论文,长安大学,2012.
16 Wei J, Hao L, He G, et al. Ceramics International,2014,40(6),8261.
17 Wei J, Zhang Q, Zhao L, et al. Ceramics International,2016,42(10),11568.
18 Wei J, Zhao L, Zhang Q, et al. Energy and Buildings,2018,159,66.
19 Wei J, Fan Y, Zhao L, et al. Ceramics International,2018,44,5829.
20 Wei J, Hao L, He G P, et al. Applied Mechanics and Materials,2013,320,354.
[1] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[2] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[3] 栾玉, 任丹, 徐丹. 横晶层对天然纤维增强聚合物复合材料力学性能影响的研究进展[J]. 材料导报, 2021, 35(5): 5195-5198.
[4] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[5] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[6] 杨国坤, 蒋国盛, 刘天乐, 覃鑫, 余尹飞. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2): 2032-2038.
[7] 马甜, 贺鹏飞, 李文晓. 环氧/酸酐体系网络结构对形状记忆性能的影响[J]. 材料导报, 2021, 35(2): 2145-2150.
[8] 王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
[9] 曹成昊, 郭安然, 刘家臣, 张军军. 复合树脂/空心微珠耐高温浮力材料的制备及性能[J]. 材料导报, 2021, 35(2): 2185-2190.
[10] 冯振宇, 范保鑫, 王纳斯丹, 韩雪飞, 李翰, 吴敬涛. 基于UMATHT子程序的玻璃纤维/乙烯基酯热响应数值模拟[J]. 材料导报, 2021, 35(2): 2191-2198.
[11] 杨路, 赵秋莹, 申明霞, 裘进浩. 二氧化锰纤维/聚偏氟乙烯复合材料薄膜的制备及压电性能[J]. 材料导报, 2020, 34(24): 24145-24149.
[12] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[13] 付国燕, 王玮玮, 刘召波, 吕东, 姚心. 氢氧化物沉淀法制备层状结构氧化钪的研究[J]. 材料导报, 2020, 34(Z2): 164-167.
[14] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[15] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed