Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11121-11128    https://doi.org/10.11896/cldb.19040154
  无机非金属及其复合材料 |
基于催化活性提升的g-C3N4的表面活化、敏化及功能化研究进展
余慧丽1,2, 杭祖圣1,2, 怀旭1,2, 黄玉安1,2, 张春祥1,2, 张金泉1,2
1 江苏省先进结构材料与应用技术重点实验室,南京 211167
2 南京工程学院材料科学与工程学院,南京 211167
A Review of Surface Activation,Sensization and Functionalization of g-C3N4 Based on Promoting Catalytic Performance
YU Huili1,2, HANG Zusheng1,2, HUAI Xu1,2, HUANG Yu'an1,2, ZHANG Chunxiang1,2, ZHANG Jinquan1,2
1 Jiangsu Key Laboratory of Advanced Strutural Materials and Application Technology, Nanjing 211167, China
2 School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
下载:  全 文 ( PDF ) ( 4603KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨型氮化碳(g-C3N4)是一种富电子的有机半导体,在最高占据分子轨道(HOMO)和最低未占分子轨道(LUMO)之间存在的带隙为2.7 eV,具有较好的光催化性能。与传统的光催化剂相比,g-C3N4不含金属元素,带隙较窄,化学稳定性好,结构易于调控且制备简单,因此逐渐成为光催化剂发展的热点。然而,由富氮有机前驱体热缩聚形成的g-C3N4由于不完全聚合而仍存在大量的结构缺陷。在光催化反应中,结构缺陷往往充当电子-空穴对的复合中心,极大降低了电荷分离效率,导致光催化活性下降。另外,g-C3N4的导电性较弱,导致体相中的光生电子迁移至表层需消耗巨大的能量,进而引起光生电子的还原势能降低,也降低了g-C3N4的催化效果。此外,块状g-C3N4还存在比表面积小、液相分散性差等缺点。综上,g-C3N4催化剂的稳定性、催化活性欠佳,极大地限制了其相关领域的发展。近几年,开发高稳定性、高催化活性的g-C3N4催化剂成为研究的热点。
   近年来,研究者们已经采用了诸如模板法、元素掺杂、共聚合、贵金属沉积或半导体复合等改性方法来提升g-C3N4的光催化活性,并将其应用于光解水析氢、有机污染物降解、人工光合作用、抗菌和有机官能团选择性转换等领域。但是上述改性方法主要基于g-C3N4的电子特性对其基体进行调控。通常催化反应主要在光催化剂表面进行,因此对g-C3N4进行表面改性是提升其光催化活性更为经济和有效的方法。
   本文综述了g-C3N4表面改性的研究进展,首先分析了g-C3N4的表面官能团状态,然后分别从活化、敏化及表面功能化三个方面综述了g-C3N4表面改性的研究现状,最后对其未来的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余慧丽
杭祖圣
怀旭
黄玉安
张春祥
张金泉
关键词:  石墨型氮化碳  活化  敏化  表面功能化    
Abstract: Graphite-type carbon nitride (g-C3N4) is an electron-rich organic semiconductor with a band gap of 2.7 eV between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Thus, it has better photocatalytic performance. Compared with the traditional photocatalyst, g-C3N4 contains no metal elements and has a narrow band gap. Because of its good chemical stability, easy structure regulation and simple preparation, g-C3N4 has become a hot spot in the development of photocatalyst. However, the original g-C3N4 formed by heat-shrinking polymerization of a nitrogen-rich organic precursor still has a large number of structural defects due to incomplete polymerization. In photocatalytic reactions, these structural defects often act as recombination centers for electron-hole pairs, greatly reducing charge separation efficiency and thus reducing photocatalytic activity. In addition, the conductivity of g-C3N4 is weak, which leads to the huge energy consumed by the photogenerated electrons in the bulk phase to migrate to the surface layer, which in turn causes the reduction potential of photogenerated electrons to decrease. Therefore, the catalytic effect of g-C3N4 is also reduced. Moreover, the bulk g-C3N4 has disadvantages such as small specific surface area and poor liquid phase dispersion. In summary, the stability and catalytic activity of g-C3N4 catalysts are poor, which greatly limits the development of related fields. In recent years, the development of high stability, high catalytic activity of g-C3N4 catalyst has become the focus of photocatalyst.
In recent years, researchers have adopted methods such as templating, elemental doping, copolymerization, precious metal deposition or semiconductor recombination to enhance their photocatalytic activity, so that g-C3N4 can be applied to fields such as photolysis water hydrogen evolution, organic pollutant degradation, artificial photosynthesis, antibacterial and selective conversion of organic functional groups. However, the above modification methods are mainly based on the electronic properties of g-C3N4 to regulate its matrix. Usually, the catalytic reaction is mainly carried out on the surface of the photocatalyst, so surface modification of g-C3N4 is a more economical and effective method for improving its photocatalytic activity.
In this paper, the research progress of surface modification of g-C3N4 is reviewed. This review firstly analyzes the surface functional group state of g-C3N4, and then reviews the research status of g-C3N4 surface modification from three aspects of activation, sensitization and surface functionalization, and finally prospects the direction of development.
Key words:  polymeric graphitic carbon nitride    activation    sensization    surface functionalization
                    发布日期:  2020-05-13
ZTFLH:  O6  
  TB3  
基金资助: 国家自然科学基金(61705101);江苏省科技支撑计划资助项目(BE2014039);江苏省科研与实践创新计划(SJCX19_0590);江苏省先进结构材料与应用技术重点实验室开放基金(ASMA201809);南京工程学院校级科研基金(QKJ201801);南京工程学院科技创新基金项目(TB201916011)
通讯作者:  xbhzs@njit.edu.cn   
作者简介:  余慧丽,2018年6月毕业于南京工程学院,获得工学学士学位。现为南京工程学院机械工程学院研究生,在杭祖圣教授的指导下进行研究。目前主要研究领域为三聚氰胺复合材料。
杭祖圣,博士,教授,硕士研究生导师,主要从事三聚氰胺基新材料、高性能塑料改性等方向的研究。现任高分子及复合材料工程系主任,中国氮肥协会技术委员会委员,江苏省颗粒学会、江苏省复合材料学会理事,江苏省高新技术企业评委,校中青年学术骨干。主持完成江苏省自然科学青年基金、宜兴市重大产学研合作项目、江苏省重点实验室基金各1项;参与国家自然科学基金、江苏省重点研发计划等国家、省级项目6项;产学研合作经验丰富,近3年主持横向项目8项,为所服务相关企业新增产值过千万;发表科研论文50余篇,其中SCI/EI论文15篇;授权及申请的专利60余项。
引用本文:    
余慧丽, 杭祖圣, 怀旭, 黄玉安, 张春祥, 张金泉. 基于催化活性提升的g-C3N4的表面活化、敏化及功能化研究进展[J]. 材料导报, 2020, 34(11): 11121-11128.
YU Huili, HANG Zusheng, HUAI Xu, HUANG Yu'an, ZHANG Chunxiang, ZHANG Jinquan. A Review of Surface Activation,Sensization and Functionalization of g-C3N4 Based on Promoting Catalytic Performance. Materials Reports, 2020, 34(11): 11121-11128.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040154  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11121
1 Goglio G, Foy D, Demazeau G. Materials Science and Engineering R Reports, 2008, 58(6), 195.
2 Zhang J, Chen Y, Wang X. Energy & Environmental Science, 2015, 8(11), 3092.
3 Liu J, Wang H, Antonietti M. Chemical Society Reviews, 2016, 45(8), 2308.
4 Sun Y P, Ha W, Chen J, et al. TrAC Trends in Analytical Chemistry, 2016, 84A, 12.
5 Yang Q, Wang W, Zhao Y, et al. RSC Advances, 2015, 5(68), 54978.
6 Zhang Y, Zhao H, Hu Z, et al. ChemPlusChem, 2015, 80(7), 1139.
7 Gibot P, Schnell F, Spitzer D. Microporous and Mesoporous Materials, 2016, 219, 42.
8 Xiao D, Li S, Liu S, et al. New Journal of Chemistry, 2016, 40(1), 320.
9 Verma S, Nasir Baig R B, Nadagouda M N, et al. ACS Sustainable Chemistry and Engineering, DOI:10.1021/acssuschemeng.6b00006.
10 Zhang G, Li G, Wang X. ChemCatChem, 2015, 7(18), 2864.
11 Li X, Hartley G, Ward A J, et al. The Journal of Physical Chemistry C, 2015, 119(27), 14938.
12 Fu J W, Yu J G, Jiang C J, et al. Advanced Energy Materials, 2018, 8, 1701503.
13 Thomas A, Fischer A, Goettmann F, et al. Journal of Materials Chemistry, 2008, 18(41), 4893.
14 Singh J A, Overbury S H, Dudney N J, et al. ACS Catalysis, 2012, 2(6), 1138.
15 Zhang X S, Hu J Y, Jiang H. Chemical Engineering Journal, 2014, 256, 230.
16 Zhang Y, Thomas A, Antonietti M, et al. Journal of the American Chemical Society, 2008, 131(1), 50.
17 Du X, Zou G, Wang Z, et al. Nanoscale, 2015, 7(19), 8701.
18 Ma T Y, Tang Y, Dai S, et al. Small, 2014, 10(12), 2382.
19 Li J J, Zhao W F, Zhang G, et al. Chemical Journal of Chinese Universities, 2018, 39(12), 2719 (in Chinese).
李娇娇, 赵卫峰, 张改, 等. 高等学校化学学报, 2018, 39(12), 2719.
20 Zhang J, Zhang M, Lin L, et al. Angewandte Chemie International Edition, 2015, 54(21), 6297.
21 Ong W J, Tan L L, Chai S P, et al. Nano Energy, 2015, 13, 757.
22 Shi L, Ding W, Yang S, et al. Journal of Hazardous Materials, 2018, 347,S0304389418300104.
23 Jian X , Liu X , Yang H , et al. Applied Surface Science, 2016, 370,514.
24 Shi Y, Long Z, Yu B, et al. Journal of Materials Chemistry A, 2015, 3(33), 17064.
25 Kharlamov A, Bondarenko M, Kharlamova G. Diamond and Related Materials, 2016, 61, 46.
26 Zhou Z, Shen Y, Li Y, et al. ACS Nano, 2015,9(12), 12480.
27 Yoo R J, Kim S Y, et al. Chemistry-A European Journal, 2015, 21(16), 6241.
28 Kim S Y, Oh J, Park S, et al. Chemistry - A European Journal, 2016, 22(15),5142.
29 Liu S, Li D, Sun H, et al. Journal of colloid and interface science, 2016, 468, 176.
30 Zhao H, Ying C, Peng Q, et al. Applied Catalysis B Environmental, 2017, 203,127.
31 Cheng F, Yan J, Zhou C, et al. Journal of Colloid & Interface Science, 2016, 468,103.
32 Sano T, Tsutsui S, Koike K, et al. Journal of Materials Chemistry A, 2013, 1(21), 6489.
33 Nie H, Ou M, Zhong Q, et al. Journal of Hazardous Materials, 2015, 300, 598.
34 Li F T, Zhao Y, Wang Q, et al. Journal of Hazardous Materials, 2015, 283, 371.
35 Li F T, Liu S J, Xue Y B, et al. Chemistry-A European Journal, 2015, 21(28), 10149.
36 Dong Q, Chen Y, Wang L, et al. Applied Surface Science, 2017, 426,1133.
37 Liao Y, Zhu S, Chen Z, et al. Physical Chemistry Chemical Physics, 2015, 17(41), 27826.
38 Huai X, Hang Z X, Wang Z Z, et al. Micro and Nano Letters, 2018, 13(3), 403.
39 Chen X B, Liu L, Yu P Y, et al. Science, 2011, 331,746.
40 Lei F, Sun Y, Liu K, et al. Journal of the American Chemical Society, 2014, 136(19), 6826.
41 Talapaneni S N, Mane G P, Mano A, et al. ChemSusChem, 2012, 5(4), 700.
42 Zhang Y, Pan Q, Chai G, et al. Scientific Reports, 2013, 3, 1943.
43 Zheng D, Huang C, Wang X. Nanoscale, 2015, 7(2), 465.
44 Niu P, Zhang L, Liu G, et al. Advanced Functional Materials, 2012, 22(22), 4763.
45 Yang L R, Lu X Y, Liu Z G, et al. Ceramics International, 2018, 44,20613.
46 Di J, Xia J, Li X, et al. Carbon, 2016, 107, 1.
47 Rahman M Z, Ran J, Tang Y, et al. Journal of Materials Chemistry A, 2016, 4(7), 2445.
48 Qiu P, Chen H, Xu C, et al. Journal of Materials Chemistry A, 2015, 3(48), 24237.
49 Li X, Hartley G, Ward A J, et al. The Journal of Physical Chemistry C, 2015, 119(27), 14938.
50 Zhang H, Li S, Lu R, et al. ACS Applied Materials & Interfaces, 2015, 7(39), 21868.
51 Takanabe K, Kamata K, Wang X, et al. Physical Chemistry Chemical Physics, 2010, 12, 13020.
52 Zhang X H, Yu L J, Zhuang C S, et al. ACS Catalysis, 2014, 4, 162.
53 Zhang X H, Yu L J, Li R J, et al. Catalysis Science & Technology, 2014, 4, 3251.
54 Yu L, Zhang X, Zhuang C, et al. Physical Chemistry Chemical Physics, 2014, 16(9), 4106.
55 Liu Z G, Wan J Y, Yang Z, et al. Chemistry - An Asian Journal, 2016, 11(13),1887.
56 Min S X, Lv G X. Journal of Physical Chemistry C, 2016, 116(37), 19644.
57 Xu J, Li Y, Peng S, et al. Physical Chemistry Chemical Physics, 2013, 15(20), 7657.
58 Wang Y B, Hong J D, Zhang W, et al. Catalysis Science and Technology, 2013, 3,1703.
59 Zhang J, Wang X. Angewandte Chemie International Edition, 2015, 54(25), 7230.
60 Zhang P, Wang T, Zeng H. Applied Surface Science, 2017, 391,404.
61 Cheng E, Yin W, Bai S, et al. Materials Letters, 2015, 146, 87.
62 Cheng R L, Jin X X, Fan X Q, et al. Acta Physico-Chimica Sinica, 2017, 33(7), 1436.
63 Chen P W, Li K, Yu Y X, et al. Applied Surface Science, 2017, 392, 608.
64 Hao H G, Song Y H, Ji H Y, et al. Applied Surface Science, 2018, 459, 845.
65 Tang H, Wang R, Zhaoo C X, et al. Chemical Engineering Journal, 2019, 374, 1064.
66 Wang D, Xu Z, Luo Q, et al. Journal of Materials Science, 2016, 51(2), 893.
67 Zhang G, Li G, Wang X. ChemCatChem, 2015, 7(18), 2864.
68 Xu J, Gao Q Z, Bai X J, et al. Catalysis Today, 2019, 332, 227.
69 Xu M S, Yang G S, Bi H T, et al. Chemical Engineering Journal, 2019, 360,866.
70 Chen Y, Lin B, Yu W, et al. Chemistry-A European Journal, 2015, 21(29), 10290.
71 Lau V W, Moudrakovski I, Botari T, et al. Nature Communications, 2016, 7,12165.
72 Hatice K, Caputo C A, Martindale B C M, et al. Journal of the American Chemical Society, 2016, 138(29), 9183.
73 Zhang G, Lan Z A, Wang X. ChemCatChem, 2015, 7(9), 1422.
74 Xu J, Jiang Q, Shang J K, et al. RSC Advances, 2015, 5(112), 92526.
75 Wang J P. Rationally designed SERS substrates and their application on the detection. Ph. D. Thesis, University of Science and Technology of China, China, 2015 (in Chinese).
王建萍. SERS 基底的理性设计及其在检测中的应用. 博士学位论文, 中国科学技术大学, 2015.
76 Wang B, Wang H, Zhong X, et al. Chemical Communications, 2016, 52(28),5049.
77 Liao X, Wang Q, Ju H. Analyst, 2015, 140(12), 4245.
78 Hu K, Zhong T, Huang Y, et al. Microchimica Acta, 2015, 182(5-6), 949.
[1] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[2] 郭增革, 张斌, 姜兆辉, 贾曌, 丁作伟, 程博闻, 李鑫. 压力流场中含炭黑聚对苯二甲酸乙二醇酯熔体的流变特性[J]. 材料导报, 2020, 34(2): 2159-2162.
[3] 张文林, 冉奋. 具有高比电容的蘑菇衍生碳材料[J]. 材料导报, 2020, 34(12): 12010-12014.
[4] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[5] 蒋青松, 陈俊文, 杨子莹, 李文波, 程文杰, 胡光. 利用电沉积-溶剂热-硒化技术提高基于二硒化镍对电极的染料敏化太阳能电池的填充因子[J]. 材料导报, 2019, 33(24): 4040-4045.
[6] 陈钢, 雷玉成, 鞠娜, 朱强, 王丹, 李天庆. 铅铋共晶合金的流动速度对CLAM钢腐蚀行为的影响[J]. 材料导报, 2019, 33(22): 3772-3776.
[7] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[8] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[9] 林星, 林冠烽, 黄彪1. 物理化学活化法制备红麻杆基活性炭及其表征[J]. 材料导报, 2019, 33(1): 198-202.
[10] 陶俊, 王晓峰, 韩仲熙, 冯博, 南海, 谢中元, 黄亚峰. 铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究[J]. 材料导报, 2018, 32(6): 894-898.
[11] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[12] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[13] 肖敏, 罗迎社, 司家勇, 刘秀波. 金属非对称循环下的匀变速加载问题[J]. 《材料导报》期刊社, 2018, 32(4): 676-680.
[14] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[15] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed