Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11129-11136    https://doi.org/10.11896/cldb.19020145
  无机非金属及其复合材料 |
电弧放电法制备碳纳米管研究进展
阮超, 陈名海
江西铜业技术研究院有限公司,南昌335400
Research Progress on Arc Discharging Synthesis of Carbon Nanotubes
RUAN Chao, CHEN Minghai
Jiangxi Copper Technology Research Institute Co.,Ltd, Nanchang 335400, China
下载:  全 文 ( PDF ) ( 4647KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米管作为一种一维纳米材料具有独一无二的力学、光学、电子、热稳定及化学稳定特性,主要被应用于锂离子电池电极材料、金属、树脂、塑料、橡胶的改性增强领域。但碳纳米管也存在缺点,尤其是其合成结构的不可控性,严重阻碍了它的进一步应用。因此,探索出制备高品质大规模碳纳米管的生产技术迫在眉睫。目前,碳纳米管常用的合成方法有化学气相沉积、电弧放电和激光烧蚀,相比于其他两种方法,电弧放电法更为经济、高效。采用电弧法合成的碳纳米管纯度高达90%,石墨化程度远胜化学气相沉积法。同时,单次电弧实验时间在1~30 min之间,电源输出功率在750~3 000 W之间,且单次碳纳米管产量高达15 g,复合石墨电极的转化率高于75%。
   根据引弧介质的不同,电弧法可分为真空电弧放电与溶液电弧放电。溶液中碳纳米管的产量很低,因此溶液电弧放电法未得到推广;目前真空介质的研究则非常成熟,真空电弧放电法具有合成设备简单、操作便捷、产物品质高等优势,但其生长机理存在较大争议。电弧法的影响参数主要包括电源类型、引弧气体类型与压力以及催化剂体系。其中,最为成熟的工艺是采用直流电源、氦气引弧、钇镍两相催化进行放电实验。
   本文归纳了电弧放电法制备碳纳米管的研究进展,分别介绍了电弧放电法生长碳纳米管的装置构造与反应机理、对电弧放电法产生影响的参数,分析了电弧放电法合成碳纳米管面临的难题以及可改善空间,以期为制备高品质、高石墨化程度、规模化的碳纳米管提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阮超
陈名海
关键词:  电弧放电  碳纳米管  电源  气氛  气压  催化剂    
Abstract: One-dimensional carbon nanotubes (CNTs) have unique mechanical, optical and electronic properties, as well as thermal and chemical stability, which have been mainly applied in the modification of lithium ion battery electrode materials, metals, resins, plastics and rubber. Meanwhile, CNTs are suffering serious structure problem, which hinders their application prospect. Therefore, it is urgent to explore large-scale production technology for preparing high-quality CNTs.Currently, the common synthetic methods for CNTs include chemical vapor deposition (CVD), arc discharge and laser ablation, in which arc discharge is famous for preparing high graphitization degree of CNTs.The purity of CNTs produced by arc discharge can reach as high as 90%, and the degree of graphitization is better than that fabricated by CVD process. Usually, the time of a single arc experiment is between 1 min and 30 min, yielding 0.1—15 g CNTs. The output power is between 750 W and 3 000 W, and the conversion rate of the composite graphite can reach 75%. Therefore, the arc discharge is an economy, high efficiency and high conversion rate process.
According to the arc-ignition medium, the arc method can be divided into vacuum arc discharge and solution arc discharge. The yield of CNTs is very low in the solution medium while the vacuum arc discharge is very mature. The vacuum arc discharge has the advantages of simple manufacturing equipment, convenient operation and high product quality.The growth mechanism of vacuumarc discharge includes solid phase, gas phase and liquid phase,the coexistence of two or three phases are also proposed, leading to great controversy. The type of power source, atmosphere and pressure, catalyst are main parameters influencing the arc discharge experiment. Up to now,the most common conditions used in the vacuumarc discharge are direct current, xenon atmosphere, and yttrium-nickel two-phase catalyst.
This review offers the progress in arc discharging synthesis of CNTs. We firstly provide the arc furnace and growth mechanism of CNTs via arc discharge method. And then we focus on the parameters affecting the arc discharge process, mainly including the type of power source,atmosphere and pressure, and the catalyst. We have confidence that the arc discharge method has a bright future in the development of high quality, high graphitization degree and large-scale production of CNTs.
Key words:  arc discharge    carbon nanotubes    power source    atmosphere    gas pressure    catalyst
                    发布日期:  2020-05-13
ZTFLH:  O6-1  
通讯作者:  mhchen2008@sinano.ac.cn   
作者简介:  阮超,2013年毕业于黑龙江大学,获得无机化学理学学士学位。现为江西铜业技术研究院有限公司研发工程师。目前主要研究领域为碳纳米材料,主要包括氮化硼纳米管的合成与高纯单壁碳纳米管的批量化生产。
陈名海,江西铜业技术研究院有限公司碳纳米材料首席科学家、中组部“万人计划-青年拔尖人才”。2006年毕业于中国科学院上海硅酸盐研究所,获得材料物理与化学博士学位,随后在韩国科学技术院进行博士后研究,2008年回国加入中国科学院苏州纳米技术与纳米仿生研究所,2019年加入江西铜业技术研究院有限公司,受聘首席科学家。先后入选江苏省“333工程”人才、江苏省六大人才高峰、江西省“双千计划”人才。主要从事纳米碳材料制备与应用研究工作,发表学术论文90余篇,申请发明专利70多项。
引用本文:    
阮超, 陈名海. 电弧放电法制备碳纳米管研究进展[J]. 材料导报, 2020, 34(11): 11129-11136.
RUAN Chao, CHEN Minghai. Research Progress on Arc Discharging Synthesis of Carbon Nanotubes. Materials Reports, 2020, 34(11): 11129-11136.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020145  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11129
1 Iijima S. Journal of Crystal Growth,1980, 50(3), 675.
2 Kroto H W, Heath J R, O'Brien S C,et al. Nature,1985, 318(6042), 162.
3 Iijima S. Nature,1991, 354 (6348), 56.
4 Lin C, Hu L, Cheng C, et al. Electrochimica Acta,2018, 260, 65.
5 Li Q, Li A, Jiang B W, et al. Monthly Notices of the Royal Astronomical Society, 2020, 2, 2.
6 Zhao Q, Xu Z, Hu Y,et al. Science Advances,2016, 2(5), e1501729.
7 Rao R, Pint C L, Islam A E, et al. ACS Nano,2018, 12(12), 11756.
8 Pamies R, Avilés M, Arias-Pardilla J, et al. Journal of Molecular Li-quids, 2019, 278, 368.
9 He M, Zhang S, Wu Q, et al. Advanced Materials, 2019, 31(9), 1800805
10 He X, Htoon H, Doorn S K, et al. Nature Materials, 2018, 17(8), 663.
11 Sun Y, Li S, Shang Y, et al. Advanced Engineering Materials, 2019, 21(4), 1801126.
12 McGinnis R L, Reimund K, Ren J, et al. Science Advances, 2018, 4(3), e1700938.
13 Sun K, Xie P, Wang Z, et al. Polymer, 2017, 125, 50.
14 He X, Gao W, Xie L, et al. Nature Nanotechnology, 2016, 11(7), 633.
15 Davenport M. Chemical & Engineering News, 2015, 93(23), 10.
16 Zhao T, Ji X, Jin W, et al. Fullerenes, Nanotubes and Carbon Nanostructures, 2017, 25(6), 355.
17 Kennedy J, Fang F, Futter J, et al. Diamond and Related Materials, 2017, 71, 79.
18 Wang B, Liu T, Liu A, et al. Advanced Energy Materials, 2016, 6(16), 1600426.
19 Cheng Y, Jiang S P. Progress in Natural Science: Materials International, 2015, 25(6), 545.
20 Tessonnier J P, Su D S. ChemSusChem, 2011, 4(7), 824.
21 Jourdain V, Bichara C. Carbon, 2013, 58, 2.
22 Shah K A, Tali B A. Materials Science in Semiconductor Processing, 2016, 41, 67.
23 Arora N, Sharma N N. Diamond and Related Materials, 2014, 50, 135.
24 Hutchison J L, Kiselev N A, Krinichnaya E P, et al. Carbon, 2001, 39(5), 761.
25 Puretzky A A, Geohegan D B, Fan X, et al. Applied Physics A, 2000, 70(2), 153.
26 Krätschmer W, Lamb L D, Fostiropoulos K, et al. Nature, 1990, 347(6291), 354.
27 Vekselman V, Feurer M, Huang T, et al. Plasma Sources Science, 2017, 26(6), 065019.
28 Smalley R E. Materials Science and Engineering: B, 1993, 19(1), 1.
29 Liu C, Cong H T, Li F, et al.Carbon, 1999, 37(11), 1865.
30 Ando Y, Zhao X, Hirahara K, et al. Chemical Physics Letters, 2000, 323(5), 580.
31 Fang X, Shashurin A, Teel G, et al. Carbon, 2016, 107, 273.
32 Zhao X, Zhao T, Peng X, et al. Fullerenes, Nanotubes, and Carbon Nanostructures, 2019, 27(1), 52.
33 Zhao T, Ji X, Jin W, et al. Applied Physics A, 2017, 123(2), 132.
34 Bao L, Yu P, Pan C, et al. Chemical Science, 2019, 10(7), 2153.
35 Zhao T, Liu Y, Li T, et al. Journal of Nanoscience and Nanotechnology, 2010, 10(6), 4078.
36 Zhao X, Inoue S, Jinno M, et al. Chemical Physics Letters, 2003, 373(3), 266.
37 Saito Y, Yoshikawa T, Inagaki M, et al. Chemical Physics Letters, 1993, 204(3), 277.
38 Ruan C, Lian Y. Fullerenes, Nanotubes and Carbon Nanostructures, 2015, 23(6), 488.
39 Ishigami M, Cumings J, Zettl A, et al. Chemical Physics Letters, 2000, 319(5), 457.
40 Sano N, Wang H, Chhowalla M, et al. Nature, 2001, 414(6863), 506.
41 Sano N, Wang H, Alexandrou I, et al. Journal of Applied Physics, 2002, 92(5), 2783.
42 Sari A H, Khazali A, Parhizgar S S. International Nano Letters, 2018, 8(1), 19.
43 Gamaly E G, Ebbesen T W. Physical Review B, 1995, 52(3), 2083.
44 De Heer W A, Poncharal P, Berger C, et al. Science, 2005, 307(5711), 907.
45 Ugarte D. Carbon, 1994, 32(7), 1245.
46 Zhou D, Chow L. Journal of Applied Physics, 2003, 93(12), 9972.
47 Harris P J F, Tsang S C, Claridge J B, et al. Journal of the Chemical Society, Faraday Transactions, 1994, 90(18), 2799.
48 Louchev O A, Sato Y, Kanda H. Physical Review E, 2002, 66(1), 011601.
49 Iijima S, Ichihashi T. Nature, 1993, 363(6430), 603.
50 Ebbesen T W, Ajayan P M. Nature, 1992, 358(6383), 220.
51 Wang X K, Lin X W, Dravid V P, et al. Applied Physics Letters, 1995, 66(18), 2430.
52 Shi Z, Lian Y, Zhou X, et al. The Journal of Physical Chemistry B, 1999, 103(41), 8698.
53 Itkis M E, Perea D E, Niyogi S, et al. The Journal of Physical Chemistry B, 2004, 108(34), 12770.
54 Arora N, Sharma N. Materials Research Express, 2016, 3(10), 105030.
55 Zeng H, Zhu L, Hao G, et al. Carbon, 1998, 36(3), 259.
56 Ohkohchi M. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 7A), 4158.
57 MatsuuraT, Taniguchi K, Watanabe T. Thin Solid Films,2007, 515(9), 4240.
58 Parkansky N, Boxman R L, Alterkop B, et al. Journal of Physics D: Applied Physics, 2004, 37(19), 2715.
59 Sugai T, Omote H, Bandow S, et al. The Journal of Chemical Physics, 2000, 112(13), 6000.
60 Roch A, Jost O, Schultrich B, et al. Physica Status Solidi, 2007, 244(11), 3907.
61 Yoshida H, Sugai T, Shinohara H. The Journal of Physical Chemistry C, 2008, 112(50), 19908.
62 Maria K H, Mieno T. Vacuum, 2015, 113, 11.
63 Ashraf A, Yaqub K, Javeed S, et al. Turkish Journal of Physics, 2010, 34(1), 33.
64 Zhao X, Ando Y. Japanese Journal of Applied Physics, 1998, 37(Part 1, No. 9A), 4846.
65 Tang D S, Xie S S, Liu W, et al. Carbon, 2000, 38(3), 480.
66 Liu Y, Shen X L, Tingkai Z, et al. Carbon, 2004, 42(8), 1852.
67 Shi Z, Lian Y, Liao F H, et al. Journal of Physics and Chemistry of Solids, 2000, 61(7), 1031.
68 Farhat S, Lamy de La Chapelle M, Loiseau A, et al. The Journal of Chemical Physics, 2001, 115(14), 6752.
69 Su Y, Yang Z, Wei H, et al. Applied Surface Science, 2011, 257(7), 3123.
70 Ando Y, Zhao X, Inoue S, et al.Diamond and Related Materials,2005, 14(3), 729.
71 Zhang D, Ye K, Yao Y, et al. Carbon, 2019, 142, 278.
72 Cui S, Scharff P, Siegmund C, et al. Carbon, 2003, 41(8), 1648.
73 Grebenyukov V V, Obraztsova E D, Pozharov A S, et al. Fullerenes, Nanotubes and Carbon Nanostructures, 2008, 16(5-6), 330.
74 Park Y S, Kim T H, Lee M H, et al. Surface and Coatings Technology, 2002, 153(2), 245.
75 Qiu H, Shi Z, Guan L, et al. Carbon, 2006, 44(3), 516.
76 Raniszewski G, Wiak S, Pietrzak L, et al. Nanomaterials, 2017, 7(3), 50.
77 Kim H H, Kim H J. Materials Science and Engineering: B, 2006, 130(1), 73.
78 Lin X, Wang X, Dravid V, et al. Applied Physics Letters, 1994, 64(2), 181.
79 Cazzanelli E, Caputi L, Castriota M, et al. Surface Science, 2007, 601(18), 3926.
80 Song X, Liu Y, Zhu J. Materials Letters, 2007, 61(2), 389.
81 Kim H H, Kim H J. Japanese Journal of Applied Physics, 2007, 46(4A), 1818.
82 Keidar M. Journal of Physics D: Applied Physics, 2007, 40(8), 2388.
83 Wang Y H, Chiu S C, Lin K M, et al. Carbon, 2004, 42(12), 2535.
84 Li Y, Xie S, Zhou W, et al. Carbon, 2001, 39(9), 1429.
85 Zhao J, Su Y, Yang Z, et al. Carbon, 2013, 58, 92.
86 Wang Z, Zhao Z, Qiu J. Carbon, 2006, 44(9), 1845.
87 Ando Y, Zhao X, Shimoyama H. Carbon, 2001, 39(4), 569.
88 Li H, Gordeev G, Garrity O, et al. ACS Nano, 2019, 13(2), 2567.
[1] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[2] 陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
[3] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[4] 朱文娟,高凤雨,唐晓龙,易红宏,于庆君,赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报, 2020, 34(3): 3044-3055.
[5] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[6] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[7] 邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066.
[8] 郑会勤. 双核钴化合物分子催化剂光催化分解水析氢性能及机理研究[J]. 材料导报, 2020, 34(12): 12163-12168.
[9] 郝博, 唐一桐, 李雪霏, 赵文波. 金属有机框架衍生物的制备及催化性能的研究进展[J]. 材料导报, 2020, 34(11): 11035-11042.
[10] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[11] 余雷, 王辉, 单兵, 姚炜峰, 唐姝文, 张俊, 陈业高. 低雾化气压对喷射成形雾化过程的影响[J]. 材料导报, 2019, 33(Z2): 463-467.
[12] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[13] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[14] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[15] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed