Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11035-11042    https://doi.org/10.11896/cldb.19040055
  材料与可持续发展(三)——环境友好材料与环境修复材料* |
金属有机框架衍生物的制备及催化性能的研究进展
郝博, 唐一桐, 李雪霏, 赵文波
昆明理工大学化学工程学院,昆明 650500
Progress in Preparation and Catalytic Performance of Metal Organic Framework Derivatives
HAO Bo, TANG Yitong, LI Xuefei, ZHAO Wenbo
Faculty of Chemical Engineering,Kunming University of Science and Technology, Kunming 650500,Chin
下载:  全 文 ( PDF ) ( 5392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非贵金属催化剂代替贵金属催化剂已成为一种趋势,但非贵金属的催化剂活性难以满足需求。金属有机框架(MOFs)具有明确的晶体结构、可调拓扑结构、超高表面积和优异的可定制性,是一种有机-无机杂化材料。比表面积高、可调控结构、多孔性等优点使得MOFs材料在催化领域呈现出巨大的发展潜力。
   通过热解金属有机框架制备的多孔碳催化剂是一种非常有前景的催化剂,热解不仅能够活化金属离子,还能提高MOFs材料的稳定性。MOFs的热解方法大致可分为直接热解、先负载再热解、MOFs复合材料热解三类。直接热解是制备多孔碳催化剂最简单的方法,但是其催化效果比贵金属催化剂低。负载热解又分为湿法浸渍后热解和气相沉积后热解,湿法浸渍后热解提高了材料中金属的种类和含量,进而提高了催化效果;气相沉积后热解反应条件苛刻,不能普及。将MOFs与其他材料复合是提高其稳定性的一种有效方法。复合材料热解后具有非常优异的催化效果。
   MOFs独特的性质越来越受关注。目前,研究者们已经制备了单金属类、双金属类、掺杂杂原子、复合材料类等多孔碳催化剂,探究了其催化性能和循环稳定性。
   本文系统综述了金属有机框架衍生物的制备方法以及作为多孔碳催化剂的最新进展,最后指出了目前研究中存在的问题并对未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝博
唐一桐
李雪霏
赵文波
关键词:  金属有机骨架  热解  催化剂    
Abstract: The replacement of precious metal catalysts by non-precious metal catalysts has become a trend, but the catalytic activity of non-precious metals is difficult to meet demand. Metal-organic frameworks (MOFs) are organic-inorganic hybrid materials with clear crystal structure, adjustable topology, ultra-high surface area, and excellent customizability. The advantages of high specific surface area, adjustable structure, and porosity make MOFs materials show great development potential in the field of catalysis.
Porous carbon catalyst obtained by pyrolyzing metal-organic frameworks is a very promising catalyst. Pyrolysis not only activates metal ions, but also improves the stability of MOFs. The pyrolysis methods of MOFs can be roughly divided into direct pyrolysis, first load reheating, and MOFs composite pyrolysis. Direct pyrolysis is the simplest method for preparing porous carbon catalysts, but its catalytic effect is inferior to that of noble metal catalysts. Load pyrolysis is divided into pyrolysis after hot-dip and post-vapor deposition, and pyrolysis after wet impregnation can improve the type and content of the metal in the material, and further enhance the catalytic effect. The reaction oconditions of pyrolysis after vapor deposition are harsh and cannot be popularized. Combination of MOFs and other materials is an effective method to improve the stability of MOFs. The composites have excellent catalytic effects after pyrolysis.
The unique properties of MOFs have been gain increasing attention. At present, researchers prepared porous carbon catalysts such as monometallic, bimetallic, doped heteroatoms and composite materials. Furthermore, the catalytic properties and cycle stability were also explored.
This paper systematically reviews the preparation methods of MOFs and their derivatives, and their latest developments as porous carbon catalysts. Finally, the problems existing in the current research are pointed out and the future research directions are prospected.
Key words:  metal organic framework    pyrolysis    catalyst
                    发布日期:  2020-05-13
ZTFLH:  TB34  
基金资助: 国家自然科学基金(21666011)
通讯作者:  wenshuixing@126.com   
作者简介:  郝博,2018年6月毕业于西北民族大学,获工学学士学位。现为昆明理工大学化学工程学院硕士研究生,在赵文波教授的指导下进行研究。目前主要研究领域为金属有机框架催化环氧化合物。
赵文波,昆明理工大学化学工程学院教授,博士生导师,云南省首批“万人计划”青年拔尖人才。2009年在中科院煤化所获博士学位。主要从事酸性气体捕集与利用,相变溶剂的分子设计以及绿色催化合成方面的科研工作。作为项目负责人,主持国家自然科学基金项目2项,省自然科学基金2项,教育部新教师联合基金1项,国家重点实验室开放基金2项,省教育厅重点项目1项。以第一或通信作者身份发表论文三十余篇,其中SCI、EI论文二十余篇,授权专利十余项。
引用本文:    
郝博, 唐一桐, 李雪霏, 赵文波. 金属有机框架衍生物的制备及催化性能的研究进展[J]. 材料导报, 2020, 34(11): 11035-11042.
HAO Bo, TANG Yitong, LI Xuefei, ZHAO Wenbo. Progress in Preparation and Catalytic Performance of Metal Organic Framework Derivatives. Materials Reports, 2020, 34(11): 11035-11042.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040055  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11035
1 Qian X, Jin L, Wang S, et al. RSC Advances,2016, 6 (97),94629.
2 Japip S, Wang H, Xiao Y C, et al.Journal of Membrane Science,2014, 467,162.
3 Hu Z, Deibert B J, Li J.Chemical Society Reviews,2014, 43 (16),5815.
4 Usov P M, McDonnell-Worth C, Zhou F, et al. Electrochimica Acta,2015, 153,433.
5 Chaikittisilp W, Hu M, Wang H, et al. Chemical Communications,2012, 48 (58),7259.
6 Young C, Salunkhe R R, Tang J, et al.Physical Chemistry Chemical Physics,2016, 18 (42),29308.
7 Liu B, Shioyama H, Akita T, et al.Journal of the American Chemical Society,2008, 130 (16),5390.
8 Wu H B, Xia B Y, Yu L, et al.Nature Communications,2015, 6,6512.
9 Yu X Y, Yu L, Wu H B, et al.Angewandte Chemie,2015, 127 (18),5421.
10 Hamon L, Serre C, Devic T, et al.Journal of the American Chemical So-ciety,2009, 131 (25),8775.
11 Zhang B, Hao S, Xiao D, et al.Materials & Design,2016, 98,319.
12 Ma J, Liu W, Liang X, et al.Journal of Alloys and Compounds,2017, 728,138.
13 Yang L, Zeng X, Wang W, et al.Advanced Functional Materials,2018, 28 (7),1704537.
14 Cho W, Park S, Oh M.Chemical Communications,2011, 47 (14),4138.
15 Khaletskaya K, Pougin A, Medishetty R, et al. Chemistry of Materials,2015, 27 (21),7248.
16 Zhi L, Liu H, Xu Y, et al.Dalton Transactions, 2018, 47 (43),15458.
17 Chen X, Chen X, Yu E, et al.Chemical Engineering Journal, 2018, 344,469.
18 Yusran Y, Xu D, Fang Q, et al.Microporous and Mesoporous Materials, 2017, 241,346.
19 Chen J, Long J L. Molecular Catalysis, 2017, 31 (5),69(in Chinese).
陈君,隆继兰. 分子催化,2017, 31 (5), 69.
20 Yang Y, Zhang W, Yang F, et al.Green Chemistry, 2016, 18 (14),3949.
21 Zhong S, Zhan C, Cao D.Carbon, 2015, 85,51.
22 Jiao L, Zhou Y X, Jiang H L. Chemical Science, 2016,7 (3),1690.
23 Yang L, Ruess G L, Carreon M A.Catalysis Science & Technology,2015, 5(5),2777.
24 Liu P F, Zhang S Y, Yang Z H, et al. Journal of Chemical Industry and Engineering, 2016, 67 (6),2325(in Chinese).
刘朋飞, 张所瀛, 杨祝红,等. 化工学报,2016, 67 (6),2325.
25 Wang Y, Miao Y, Li S, et al.Molecular Catalysis, 2017, 436,128.
26 Hermes S, Schroter M K, Schmid R, et al.Angewandte Chemie (International ed. in English), 2005, 44 (38),6237.
27 Mueller M, Hermes S, Kaehler K, et al.Chemistry of Materials, 2008, 20 (14),4576.
28 Decoste J B, Peterson G W, Smith M W, et al.Journal of the American Chemical Society, 2012, 134 (3),1486.
29 Huang G, Zhang F, Du X, et al.ACS Nano, 2015, 9 (2),1592.
30 Ge L, Yang Y, Wang L, et al.Carbon, 2015, 82,417.
31 Hou Y, Huang T, Wen Z, et al.Advanced Energy Materials,2014, 4 (11),8034.
32 Hou Y, Wen Z, Cui S, et al.Advanced Functional Materials,2015, 25 (6),872.
33 Wei J, Hu Y, Wu Z, et al.Journal of Materials Chemistry,2015, 3 (32),16867.
34 Liu S, Zhang H, Zhao Q, et al.Carbon,2016, 106,74.
35 Li Z, Shao M, Zhou L, et al.Advanced Materials,2016, 28 (12),2337.
36 Liu J, Zhang A, Liu M, et al.Journal of CO2 Utilization,2017, 21,100.
37 Zhou Y, Long J, Li Y.Chinese Journal of Catalysis,2016, 37 (6),955.
38 Guo X, Chen X, Su D, et al.Acta Chimica Sinica,2018, 76 (1),1004.
39 Jagadeesh R V, Murugesan K, Alshammari A S, et al.Science, 2017, 358 (6361), 326.
40 Fang R, Luque R, Li Y.Green Chemistry, 2016, 18 (10), 3152.
41 Bhadra B N, Jhung S H.Nanoscale, 2018, 10 (31), 15035.
42 Chaemchuen S, Xiao X, Ghadamyari M, et al.Journal of Catalysis,2019, 370, 38.
43 Chen S, Yu J, Zhang J.Journal of CO2 Utilization,2018, 24, 548.
44 Ma X, Zhou Y X, Liu H, et al.Chemical Communications (Camb), 2016, 52 (49), 7719.
45 Zhang X, Wang N, Geng L, et al.Journal of Colloid and Interface Science,2018, 512, 844.
46 Chen H, Shen K, Mao Q, et al.ACS Catalysis, 2018, 8 (2), 1417.
47 Liu M, Li J.ACS Applied Materials & Interfaces,2016, 8 (3),2158.
48 Liu Q, Tian J, Cui W, et al.Angewandte Chemie (International ed. in English), 2014, 53 (26),6710.
49 Yang S, Peng L, Oveisi E, et al. Chemistry, 2018, 24 (17),4234.
50 Ronda-Lloret M, Rico-Francés S, Sepúlveda-Escribano A, et al.Applied Catalysis A: General, 2018, 562,28.
51 Zhao P, Qin F, Huang Z, et al.Chemical Engineering Journal,2018, 349,72.
52 Chen X, Li J J, Chen X, et al.ACS Applied Nano Materials,2018, 1 (6),2971.
53 Liu H, Zhang S, Liu Y, et al. Small,2015, 11(26),3130.
54 Zhou L, Meng J, Li P, et al. Materials Horizons, 2017, 4 (2),268.
[1] 刘树和, 刘彬, 赵焱, 张兰, 于晓华, 李如燕, 姚耀春, 董鹏. 香蒲活性炭用于锂硫电池正极材料[J]. 材料导报, 2020, 34(8): 8014-8019.
[2] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[3] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[4] 朱文娟,高凤雨,唐晓龙,易红宏,于庆君,赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报, 2020, 34(3): 3044-3055.
[5] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[6] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[7] 邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066.
[8] 郑会勤. 双核钴化合物分子催化剂光催化分解水析氢性能及机理研究[J]. 材料导报, 2020, 34(12): 12163-12168.
[9] 阮超, 陈名海. 电弧放电法制备碳纳米管研究进展[J]. 材料导报, 2020, 34(11): 11129-11136.
[10] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[11] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[12] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[13] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[14] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[15] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed