Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11043-11048    https://doi.org/10.11896/cldb.19040096
  材料与可持续发展(二)——材料绿色制造与加工 |
快速制备纳米SiO2粉末基隔热复合材料的研究进展及展望
张凤云, 姜勇刚, 冯军宗, 李良军, 冯坚
国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室,长沙 410073
Research Progress and Prospect on Rapid Preparation of Nano-silica Powder-based Thermal Insulation Composites
ZHANG Fengyun, JIANG Yonggang, FENG Junzong, LI Liangjun, FENG Jian
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 6105KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米气凝胶隔热复合材料是一种隔热性能优异的纳米复合材料,广泛应用于航空宇航、石油化工、建筑保温隔热领域,但是较高的成本和复杂的超临界或常压干燥技术限制了其在隔热领域的应用。纳米SiO2粉末基复合材料采用纳米SiO2粉末为基体,陶瓷纤维作增强材料,加入粘接剂、表面活性剂等添加剂,通过干法或者湿法成型实现快速制备,制备过程不需要复杂的干燥技术,相比纳米气凝胶隔热材料具有更低的成本,是一种极具发展潜力的纳米隔热复合材料。
   然而,由于纳米SiO2粉末基复合材料采用纳米SiO2粉末为基体,导致材料力学性能明显低于纳米气凝胶隔热复合材料;添加增强纤维和粘接剂可以提高材料的力学性能,但是其隔热性能明显下降。因此,近年来研究者们主要从优化制备工艺方面不断尝试,在充分发挥纳米SiO2粉末基复合材料低热导率优势的同时提高其力学性能。
   目前,纳米SiO2粉末基隔热复合材料的快速制备方法主要包括干法成型工艺和湿法成型工艺两类。其中,干法模压成型工艺应用较早,工艺成熟,制备的SiO2粉末基隔热复合材料具有较低的热导率,但成型压力较大,生产复杂形状产品的难度较大。湿法成型工艺主要有模压成型和浇筑成型两种方法,湿法模压成型相比干法模压成型具有更好的分散效果,但增加了工艺的复杂性;浇筑成型工艺简单,可成型复杂异性产品,为纳米SiO2粉末基隔热复合材料的快速制备提供了更多选择。
   本文综述了纳米SiO2粉末基隔热复合材料的快速制备方法及其研究进展,分别对干法成型工艺和湿法成型工艺进行介绍,分析了纳米SiO2粉末基复合材料面临的问题,对其未来发展趋势进行了展望,以期为快速制备高性能、低成本的新型纳米SiO2粉末基隔热复合材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张凤云
姜勇刚
冯军宗
李良军
冯坚
关键词:  快速制备  纳米SiO2粉末  隔热复合材料    
Abstract: Aerogel composites have been widely used in aerospace, petrochemical, construction and other thermal insulation fields due to their excellent thermal insulation properties. However, high manufacturing cost and complicated preparation process restrict the commercial exploitations of aerogel composites. Using nano-silica powder, ceramic fiber and other additives as raw materials, dry forming process or wet forming process can be used to realize the rapid preparation of nano-silica powder-based thermal insulation composites. Compared with aerogel thermal insulation composites, the preparation process of nano-silica powder-based thermal insulation composites does not require complicated supercritical drying technology, and is a kind of thermal insulation material with great development potential.
However,since the nano-silica powder-based thermal insulation composites are based on fumed silica, its mechanical properties are significantly lower than aerogel thermal insulation composites. The addition of reinforcing fibers and binders can improve the mechanical properties of nano-silica powder-based thermal insulation composites, but their thermal insulation properties are significantly reduced. In recent years, researchers have been trying to optimize the preparation process, and have gave full play to the advantages of low thermal conductivity of nano-silica powder-based thermal insulation composites while improving their mechanical properties.
At present, the rapid preparation methods of nano-silica powder-based thermal insulation composites, which mainly study more, mainly include dry forming process and wet forming process. Among them, the dry compression molding is applied earlier and the process is mature. The prepared nano-silica powder-based thermal insulation composites has lower thermal conductivity, but the molding pressure is larger, and it is more difficult to produce complex shape products. The wet forming process mainly has two methods of compression molding and casting molding. The wet compression molding has better dispersion effect than the dry compression molding, but the complexity of the process is increased; the casting molding is convenient and can be used for irregular shapes. It provides more options for the rapid preparation of nano-silica powder-based thermal insulation composites.
In this paper, the rapid preparation method and research progress of nano-silica powder-based thermal insulation composites are reviewed, and the dry forming process and the wet forming process are introduced respectively. The problems faced by nano-silica powder-based thermal insulation composites are analyzed, and the future development trend is prospected. It provides a reference for the rapid preparation of high perfor-mance, low cost new nano-silica powder-based thermal insulation composites.
Key words:  rapid preparation    nano-silica powder    thermal insulation composites
                    发布日期:  2020-05-13
ZTFLH:  TB332  
基金资助: 湖南省自然科学基金(2018JJ2469)
通讯作者:  jygemail@163.com   
作者简介:  张凤云,2017年6月毕业于湖南师范大学,获得工学学士学位。现为国防科技大学空天科学学院硕士研究生,在姜勇刚副研究员的指导下进行研究。目前主要研究领域为纳米粉末基隔热复合材料。
姜勇刚,国防科技大学空天科学学院副研究员、硕士研究生导师。2001年7月毕业于青岛大学化工系,2003年12月和2007年12月在国防科技大学材料科学与工程专业分别取得硕士和博士学位,2016.08—2017.07在英国牛津大学材料系访学一年,主要从事纳米气凝胶隔热复合材料的研究。近年来,发表学术论文30余篇,获国家授权发明专利20余项。
引用本文:    
张凤云, 姜勇刚, 冯军宗, 李良军, 冯坚. 快速制备纳米SiO2粉末基隔热复合材料的研究进展及展望[J]. 材料导报, 2020, 34(11): 11043-11048.
ZHANG Fengyun, JIANG Yonggang, FENG Junzong, LI Liangjun, FENG Jian. Research Progress and Prospect on Rapid Preparation of Nano-silica Powder-based Thermal Insulation Composites. Materials Reports, 2020, 34(11): 11043-11048.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040096  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11043
1 Kistler S S.Nature, 1931, 127(3211), 741.
2 Hrubesh L W.Journal of Non-Crystalline Solids, 1998, 225(1), 335.
3 Dorcheh A S, Abbasi M H.Journal of Materials Processing Tech, 2008, 199(1-3), 10.
4 Yang H, Ye F, Liu Q, et al.Materials & Design, 2015, 85, 438.
5 Jung I K, Gurav J L, Ha T J, et al.Ceramics International, 2012, 38, 105.
6 Han X, Williamson F, Bhaduri G A, et al.The Journal of Supercritical Fluids, 2015, 106, 140.
7 Li J, Lei Y, Xu D, et al.Journal of Sol-Gel Science and Technology, 2017, 82(3), 702.
8 Zhang H, Zhang X, Fang S.Journal of the Chinese Ceramic Society, 2011, 39(2), 268.
9 Zhang H, He X, He F.Journal of Alloys and Compounds, 2009, 472(1-2), 194.
10 Feng J, Gao Q F, Feng J Z, et al. Journal of National University of Defense Technology, 2010, 32(1), 40 (in Chinese).
冯坚, 高庆福, 冯军宗, 等. 国防科技大学学报, 2010, 32(1), 40.
11 Li M, Jiang H, Xu D.Journal of Porous Materials, 2018, 25(5), 1417.
12 Jie Y, Li S, Luo Y, et al.Carbon, 2011, 49(5), 1542.
13 Coffman B E, Fesmire J E, White S, et al. In: AIP Conference Procee-dings. USA, 2010, pp. 913.
14 Prakash S S, Brinker C J, Hurd A J, et al.Nature, 1995, 375(6530), 431.
15 Tahara D, Itoh Y, Ohmura T, et al. In: The First International Confe-rence on the Characterization and Control of Interfaces for High Quality Advanced Materials. Kurashiki, 2003, pp. 173.
16 Naito M, Abe H.Ceramic Transactions, 2005, 157, 69.
17 Ramirez I, Cherney E A, Jayaram S, et al.IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1), 228.
18 Wang Q F, Li C Z, Wang Z T, et al.Journal of East China University of Science and Technology, 2001(6), 626 (in Chinese).
汪齐方, 李春忠, 王志庭, 等. 华东理工大学学报, 2001(6), 626.
19 Bagwe R P, Hilliard L R, Tan W.Langmuir, 2006, 22(9), 4357.
20 Fang W Z, Zhang H, Qu X D, et al.CIESC Jorunal, 2014, 65(s1), 168 (in Chinese).
方文振, 张虎, 屈肖迪, 等.化工学报, 2014, 65(s1), 168.
21 Zhao J J, Duan Y Y, Wang X D, et al.International Journal of Thermal Sciences, 2013, 70, 54.
22 Wang X D, Sun D, Duan Y Y, et al.Journal of Non-Crystalline Solids, 2013, 375, 31.
23 Abe H, Abe I, Sato K, et al. Journal of the American Ceramic Society, 2005, 88(5), 1359.
24 Abe I, Sato K, Abe H, et al. Advanced Powder Technology, 2008, 19(4), 311.
25 Zhuo L H, Kou K C, Wu G L, et al. China Adhesives, 2011, 20(1), 53 (in Chinese).
卓龙海, 寇开昌, 吴广磊, 等. 中国胶粘剂, 2011, 20(1), 53.
26 Yan D Z, Tang C B, Xie Z H.Energy Saving of Non-ferrous Metallurgy, 2010(6), 33 (in Chinese).
严大洲, 汤传斌, 谢正和.有色冶金节能, 2010(6), 33.
27 Li Q K, Li L, Zhang Q, et al.Chemical Industry Times, 2017, 31(9), 9 (in Chinese).
李启坤, 李莉, 张琪, 等.化工时刊, 2017, 31(9), 9.
28 Smith D R, Hust J G. National Institute of Standards and Technology, 1988, 10, 3901.
29 Feng J, Yan Y, Chen D, et al.Composites Part B: Engineering, 2011, 42(7), 1821.
30 Han L, Yuan L, Liu J Z, et al.Applied Mechanics and Materials, 2011, 148-149, 1011.
31 Park S, Kwon Y P, Kwon H C, et al.Journal of Nanoscience and Nanotechnology, 2008, 8(10), 5052.
32 Feng J, Chen D, Ni W, et al.Journal of Non-Crystalline Solids, 2010, 356(9-10), 480.
33 Feng J, Wang Y, Feng X, et al.Applied Thermal Engineering, 2016, 105, 39.
34 Lian T W, Kondo A, Kozawa T, et al.Ceramics International, 2015, 41(8), 9966.
35 Xia T, Yang H, Li J, et al. Ceramics International, 2019, 45(2), 2662.
36 Frank D, Zimmermann A. U.S. Patent,US6887563, 2005.
37 Yuan B, Ding S, Wang D, et al.Materials Letters, 2012, 75, 204.
38 Shi X, Zhang S C, Chen Y F, et al.Key Engineering Materials, 2010, 434-435, 689.
39 Tang X, Yu Y.International Journal of Applied Ceramic Technology, 2018, 15(1), 232.
40 Soares A, Júlio M, Flores C I, et al.Key Engineering Materials, 2014, 634, 46.
41 Júlio M D F, Soares A, Ilharco L M, et al.Construction and Building Materials, 2016, 124, 485.
42 Júlio M D F, Soares A, Ilharco L M, et al.Cement and Concrete Compo-sites, 2016, 72, 309.
43 Ng S, Sandberg L I C, Jelle B P.Key Engineering Materials, 2015, 629-630,43.
44 Ng S, Jelle B P, Sandberg L I C, et al.Construction and Building Mate-rials, 2015, 77, 307.
45 Liu Z, Ding Y, Wang F, et al.Construction and Building Materials, 2016, 122, 548.
46 Strzaŀkowski J, Garbalińska H.Advances in Cement Research, 2016, 28(9), 567.
47 Garbalińska H, Strzaŀkowski J.Journal of Materials in Civil Engineering, 2018, 30(12), 04018326.
48 Hanif A, Diao S, Lu Z, et al.Construction and Building Materials, 2016, 116, 422.
49 Lee K J, Choe Y J, Kim Y H, et al.Ceramics International, 2018, 44(2), 2204.
[1] 瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed