Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 198-202    https://doi.org/10.11896/cldb.201901024
  材料与可持续发展(二)——材料绿色制造与加工* |
物理化学活化法制备红麻杆基活性炭及其表征
林星1, 林冠烽2, 黄彪1
1 福建农林大学材料工程学院,福州 350108
2 福建农林大学金山学院,福州 350002
Synthesis of Activated Carbon from Kenaf Rod by Physico-chemical Coupling Activation and Its Characterization
LIN Xing1, LIN Guanfeng2, HUANG Biao1
1 College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108
2 College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou 350002
下载:  全 文 ( PDF ) ( 1698KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以速生材红麻秆为原料,采用常规化学活化法和物理化学耦合活化法制备红麻杆基活性炭。通过活化时间、活化温度和磷酸浓度三个因素探究物理化学耦合活化法制备红麻杆基活性炭的工艺参数。借助红外光谱、扫描电镜、比表面积及孔容表征活性炭的表面官能团、表面形态和孔结构特征。研究结果表明,耦合活化法制备红麻杆基活性炭的较佳工艺参数为:磷酸浓度5%,活化时间120 min,活化温度850 ℃。该工艺条件下制备的耦合活化炭具有发达的中孔结构,并且其表面富含羰基、羟基、羧基等官能团,碘吸附值达1 148 mg·g-1、比表面积达1 636.94 m2·g-1、总孔容达0.95 cm3·g-1,分别约为常规活化炭的1.4倍、2倍和2倍。耦合活化法利用磷酸-水蒸气的协同活化效应,该效应对活性炭孔隙的形成、发展和调控具有重要作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林星
林冠烽
黄彪1
关键词:  物理化学耦合活化  红麻杆  磷酸  介孔活性炭  吸附    
Abstract: The activated carbon was prepared from kenaf rod by conventional chemical activation and physico-chemical coupling activation. The appropria-te preparation parameters of kenaf rod based activated carbon prepared by physico-chemical coupling activation were investigated by taking three factors including activation time, activation temperature and phosphoric acid concentration into consideration. The surface functional groups, morphology characteristics, specific surface area and pore structure characteristics of the prepared activated carbon were characterized by Fourier transform infrared spectrometer(FTIR), scanning electron microscopy(SEM), automatic specific surface area and pore size analyzer(ASAP). The results indicated that the optimum preparation conditions of kenaf rod based activated carbon were phosphoric acid mass concentration of 5%, activation time of 120 min, activation temperature of 850 ℃. Under this preparation conditions, the activated carbon prepared by physico-chemical coupling activation possessed well developed mesoporous structure and contained abundant functional groups like carbonyl group, hydroxyl group and carboxyl group. The iodine adsorption value, specific surface area and total pore volume of the prepared activated carbon were 1 148 mg/g, 1 636.94 m2/g and 0.95 cm3/g, which were about 1.4 times, 2 times and 2 times of that of the ones prepared by conventional chemical activation. Compared to single chemical activation process, physico-chemical coupling activation plays an important role in the formation, developing and regulation of activated carbon pore structure by taking the advantage of synergistic activation of phosphoric acid and water vapor.
Key words:  physico-chemical coupling activation    kenaf rod    phosphoric acid    mesoporous activated carbon    adsorption
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TQ424.1  
基金资助: 国家自然科学基金(31400510;31770611);福建省科技重大专项基金(2014NZ0003);福建省教育厅中青年科研项目(JAT160684);福建省高校新世纪优秀人才支持计划
作者简介:  黄彪,男,福建农林大学材料工程学院教授,博士生导师,主要从事植物纤维化学和炭材料的研究, fjhuangbiao@hotmail。
引用本文:    
林星, 林冠烽, 黄彪1. 物理化学活化法制备红麻杆基活性炭及其表征[J]. 材料导报, 2019, 33(1): 198-202.
LIN Xing, LIN Guanfeng, HUANG Biao. Synthesis of Activated Carbon from Kenaf Rod by Physico-chemical Coupling Activation and Its Characterization. Materials Reports, 2019, 33(1): 198-202.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901024  或          http://www.mater-rep.com/CN/Y2019/V33/I1/198
1 Wang G P,Zhang L,Zhang J J.Chemical Society Reviews,2012,41(2),797.2 Zhang X X, Wang X. Journal of Forestry Engineering,2016,1(3),58(in Chinese).张晓雪,王欣.林业工程学报,2016,1(3),58.3 Chang K L, Chen C C, et al. New Carbon Materials,2014,29(1),47.4 Guo H, Zhang J S, Zhu T X, et al. Materials Review B: Research Papers,2016,30(2),24(in Chinese).郭晖,张记升,朱天星,等.材料导报:研究篇,2016,30(2),24.5 Mazlan M A F,Uemura Y,et al. Procedia Engineering,2016,148(6),530.6 Xu J T, Qi J M, et al. Straits Science,2016,7(1),128(in Chinese).徐建堂,祁建民,等.海峡科学,2016,7(1),128.7 Mastosh I, Sato M A. Journal of Wood Science,2009,55(4),283.8 Inagaki M, Nishikawa T, Sakuratani K, et al. Carbon,2004,42(4),890.9 Cuerda C E M, Maci G A, Dazdez M A, et al. Microporous and Mesoporous Materials,2008,111(1-3),523.10 Yang Y, Li L, Sun Z Y, et al. Science Technology and Engineering,2012,12(24),6132(in Chinese).杨颖,李磊,孙振亚,等.科学技术与工程,2012,12(24),6132.11 Qiu J, Ning P, Wang X, et al. Frontiers of Environmental Science & Engineering,2016,10(1),11.12 Ramanujan R V, Purushothama S, Chia M H. Materials Science and Engineering C,2007,27(4),659. 13 Pak S H, Jeon M J, Jeon Y W, et al. International Biodeterioration & Biodegradation,2016,113(4),195. 14 Hu L J, Wu F, Peng S Z, et al. Chemistry,2016(3),205(in Chinese).胡立鹃,吴峰,彭善枝,等.化学通报,2016(3),205.15 Sun L M, Zhang L P, Xue J H, et al. Journal of Chemical and Biological Engineering,2016,33(3),5(in Chinese).孙龙梅,张丽平,薛建华,等.化学与生物工程,2016,33(3),5.16 Lin X, Yang X, Cai Z H, et al. Biomass Chemical Engineering,2018,52(3),29(in Chinese).林星,杨旋,蔡政汉,等.生物质化学工程,2018,52(3),29.17 Wei X Q, Li Q H, et al. New Carbon Materials,2015,30(6),579.18 Chen W T, Ran Q C, Cai X Z, et al. CIESC Journal,2016,67(S1),353(in Chinese).陈文婷,冉启成,蔡献宗,等.化工学报,2016,67(S1),353.19 Islam M A, Ahmed M J, Khanday W A, et al. Journal of Environmental Management,2017,203(1),237.20 Abdel-ghani N T, Chaghaby G A, Gammal M H, et al. New Carbon Materials,2016,31(5),492.21 Kwiatkowski M, Broniek E. Colloids and Surfaces A,2017,529(6),443.22 Yu L W, Daisuke T, Zuo S L, et al. Bio Resources,2015,10(2),2406.23 Zhang G Z, Zhao S X, Chen M H, et al. Forestry Machinery and Woodwoking Equipment,2017,45(2),35(in Chinese). 张冠中,赵师辛,陈梦涵,等.2017,45(2),35.24 Jiang Z H, Zhang D S, Yue Y D, et al. New Carbon Materials,2008,19(4),249(in Chinese).江泽慧,张东升,岳永德,等.新型炭材料,2008,19(4),249.25 Li Y, Zhang X, Yang R, et al. RSC Advances,2015,5(41),32626.26 Song L, Zhang B, Chen J Y, et al. Chemical Industry and Engineering Progress,2014,33(6),1498(in Chinese).宋磊,张彬,陈家元,等.化工进展,2014,33(6),1498.27 Yorgun S, Yildiz D. Journal of the Taiwan Institute of Chemical Engineers,2015,53(2),122.28 Qin C, Chen Y, Gao J. Materials Letters,2014,135(2),123.29 Diana C S, Azevedo J, Cassia S, et al. Microporous and Mesoporous Materials,2007,100(1),361.30 Zuo S L. Chemistry and Industry of Forest Products,2017,37(3),1(in Chinese).左宋林.林产化学与工业,2017,37(3),1.31 Chen Y D, Huang B, Huang M J, et al. Journal of the Taiwan Institute of Chemical Engineers,2011,42(5),837.32 Qian Q R, Machida M, Tatsumoto H. Bioresource Technology,2007,98(2),353.33 Chen H L, Song L. Journal of Huaqiao University (Nature Science),2014,35(5),558(in Chinese). 陈虹霖,宋磊.华侨大学学报(自然科学版),2014,35(5),558.34 Nowicki P, Kazmierczak J, Pietrzak R. Powder Technology,2015,269(2),312.35 Niu Y L, Ma C Y, Li D X, et al. Chemical Journal of Chinese Universities,2010,31(10),1929(in Chinese).牛耀岚,马承愚,李登新,等.高等学校化学学报,2010,31(10),1929.
[1] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[4] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[5] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[6] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[7] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[8] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[9] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[10] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[11] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[12] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[13] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[14] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[15] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed