Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11066-11076    https://doi.org/10.11896/cldb.20070069
  无机非金属及其复合材料 |
压电纳米发电机材料选用和结构设计研究进展
张庆, 刘呈坤*, 毛雪, 吴月霞, 江志威, 赵丽, 洪洁
西安工程大学纺织科学与工程学院,西安 710048
Research Progress in Material Selection and Structure Design of Piezoelectric Nanogenerator
ZHANG Qing, LIU Chengkun*, MAO Xue, WU Yuexia, JIANG Zhiwei, ZHAO Li, HONG Jie
School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
下载:  全 文 ( PDF ) ( 8485KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自2006年压电纳米发电机首次亮相以来,各种压电材料都被应用到这一领域,压电纳米发电机的制备工艺和器件结构不断得到优化。同时,研究者们不断利用新方法来开发新的压电材料,以改善压电纳米发电机的性能。而压电材料性能的制约使研究者开始对器件结构进行构思,从常规的平行板结构到多层结构,再到混合器件,都在进行着不断的探索,并取得丰富成果。本文从压电纳米发电机的结构入手,结合其材料、制备方法、性能、特点等,对近年来相关研究成果进行了概述,评价了不同压电材料和不同结构条件下纳米发电机的输出性能表现,分析了压电纳米发电机今后发展面临的问题和发展前景,以期为研制具有多源能量采集能力的压电纳米发电机提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张庆
刘呈坤
毛雪
吴月霞
江志威
赵丽
洪洁
关键词:  纳米发电机  压电材料  结构设计  压电性能  输出性能    
Abstract: Since the first appearance of the piezoelectric nanogenerator in 2006, various piezoelectric materials have been applied in this field. The pre-paration technology and device structure of the piezoelectric nanogenerator have been continuously optimized. At the same time, researchers are constantly using new methods to develop new piezoelectric materials to improve the performance of piezoelectric nanogenerator. However, the limitations of piezoelectric materials have led researchers to begin to redesign the device structures. The researchers have been constantly exploring a variety of structures involved conventional parallel plate structure, multi-layer structure, and hybrid devices, and have made abundant achievements. This review summarizes the relevant research results in recent years in terms of the structure of piezoelectric nanogenerator combining with its materials, preparation methods, properties, characteristics, etc. The output performance of nanogenerators for different piezoelectric materials and structures, and the problems and development prospects of piezoelectric nanogenerators in the future are analyzed to provide the reference on developing excellent piezoelectric nanogenerator with multisource energy harvesting ability.
Key words:  nanogenerator    piezoelectric material    structure design    piezoelectric performance    output performance
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TM31  
基金资助: 国家自然科学基金青年科学基金项目(51503168); 陕西省创新能力支撑计划项目(2020PT-043); 陕西省创新人才推进计划项目(2017KJXX23); 山东省博士后创新项目专项资金资助项目(201504); 西安工程大学研究生年度创新基金项目(chx2020001)
通讯作者:  *liuchengkun@xpu.edu.cn   
作者简介:  张庆,2018年6月毕业于西安工程大学,获工学学士学位。现为西安工程大学纺织科学与工程学院硕士研究生。目前主要研究领域为纳米纤维与压电纳米发电机的制备。刘呈坤,西安工程大学纺织科学与工程学院教授、硕士研究生导师。2011年在西安交通大学获博士学位。英国曼彻斯特大学访问学者,陕西省青年科技新星。主要研究方向为纺织材料与纺织品设计、纳米纤维材料制备及功能性制品开发。主持国家自然科学基金青年科学基金项目、陕西省创新能力支撑计划项目、陕西省创新人才推进计划项目和山东省博士后创新项目专项资金资助项目等科研项目10余项,完成2项专利转让。以第一或通讯作者身份发表论文30余篇,其中SCI/EI收录20篇,授权国家发明专利10项。
引用本文:    
张庆, 刘呈坤, 毛雪, 吴月霞, 江志威, 赵丽, 洪洁. 压电纳米发电机材料选用和结构设计研究进展[J]. 材料导报, 2021, 35(11): 11066-11076.
ZHANG Qing, LIU Chengkun, MAO Xue, WU Yuexia, JIANG Zhiwei, ZHAO Li, HONG Jie. Research Progress in Material Selection and Structure Design of Piezoelectric Nanogenerator. Materials Reports, 2021, 35(11): 11066-11076.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070069  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11066
1 Guo C C, Cheng L F, Ye F. Materials China,2019,38(9),831(in Chinese).
郭楚楚,成来飞,叶昉.中国材料进展,2019,38(9),831.
2 Wei J, Zhang Q, Zhao L L, et al. Journal of Nanoscience and Nanotech?nolgy,2018,18(2),1224.
3 Kim J H, Choi S C. Journal of the Korean Ceramic Society,2018,55(3),285.
4 Wang F, Qin X F, Zhu D D, et al. Materials Science in Semiconductor Processing,2015,29(1),155.
5 Li Z J, Gao W D, Meng A L, et al. The Journal of Physical Chemistry C,2009,113(1),91.
6 Zhang Y F, Sheng L M, FangY H, et al. Chemical Physics Letters,2017,678(1),17.
7 Liu S, Wang J G. Physica E: Low?dimensional Systems and Nanostructures,2016,81(1),268.
8 Liu H T, Huang Z H, Fang M H, et al. Journal of Crystal Growth,2015,419(1),20.
9 Zhou X T, Wang N, Lai H L, et al. Applied Physics Letters,1999,74(26),3942.
10 Yang G Z, Cui H, Sun Y, et al. Rural Economy,2009,113(36),15969.
11 Wei J, Li K Z, Chen J, et al. Journal of Crystal Growth,2011,335(1),160.
12 Chen J J, Shi Q, Xin L P, et al. Current Nanoscience,2012,8(2),226.
13 Wu R B, Pan Y, Yang G Y, et al. The Journal of Physical Chemistry C,2007,111(17),6233.
14 Li B B, Mao B X, Huang H Q, et al. International Journal of Applied Ceramic Technology,2020,00(1),1.
15 Li J, Zhu X L, Ding P, et al. Nanotechnology,2009,20(14),145602.
16 Wei J, Li K Z, Chen J, et al. Journal of the American Ceramic Society,2013,96(2),627.
17 Duan X F, Lieber C M. Journal of the American Chemical Society,2000,122(1),188.
18 Zhang B C, Wang H, He L, et al. Nano Letters,2017,17(12),7323.
19 Wu S T, Wang L C, Yi X Y, et al. Journal of Applied Physics,2017,122(20),205302.
20 Amnon R, Tamir F,Yarden D, et al. The Journal of Physical Chemistry C,2018,122(23),12413.
21 Huang M H, Wu Y Y, Feick H N, et al. Advanced Materials,2001,13(2),113.
22 Kenry, Lim C T. Progress in Materials Science,2013,58(5),705.
23 Prakash J. Silicon?based Nanomaterials,2013,187(1),179.
24 Krishnan B, Kotamraju S P, Sundaresan S G, et al. Materials Science Forum,2010,645?648(1),187.
25 Panda S K, Sengupta J, Jacob C. Journal of Nanoscience and Nanotech?nology,2010,10(5),3046.
26 Zhang Y F, Nishitani?Gamo M, Xiao C Y, et al. Journal of Applied Phy?sics,2002,91(9),6066.
27 Lopez?Camacho E, Fernandez M, Gomez?Aleixandre C. Journal of Phy?sics D: Applied Physics,2009,42(4),45302.
28 Nazarudin N F F B, Azizan S N A B, Rahman S A, et al. Thin Solid Films,2014,570(Part B),243.
29 Goh B T, Abdul R S. Journal of Crystal Growth,2014,407(1),25.
30 Zhang H F, Wang C M, Wang L S. Nano Letters,2002,2(9),941.
31 Sun Y, Cui H, Yang G Z, et al. CrystEngComm,2010,12(4),1134.
32 Kohno H, Yagi K, Niioka H. Japanese Journal of Applied Physics,2011,50(1),18001.
33 Zheng H W, Zhao T T, Tian Y, et al. Materials Letters,2014,120(1),13.
34 Yu J S, Liu H S, Zhou X G, et al. IOP Conference Series: Materials Science and Engineering,2019,504(1),12039.
35 Wang X C, Tang B, Gao F M, et al. Journal of Physics D: Applied Phy?sics,2011,44(24),245404.
36 Kim H Y, Bae S Y, Kim N S, et al. Chemical Communications,2003,9(20),2634.
37 Zhang M, Zhao J, Li Z J, et al. Journal of Solid State Chemistry,2016,243(1),247.
38 Wang J K, Zhang Y Z, Li J Y, et al. Powder Technology,2017,317(1),209.
39 Li Z J, Ma F L, Zhang M, et al. The Journal of Chemical Physics,2015,31(6),1191(in Chinese).
李镇江,马凤麟,张猛,等.物理化学学报,2015,31(6),1191.
40 Wu R B, Zhou K, Wei J, et al. The Journal of Physical Chemistry C,2012,116(23),12940.
41 Zhang J, Liu X H, Jia Q L, et al. Ceramics International,2015,42(3),4600.
42 Zhang J, Jia Q L, Zhang S M, et al. Ceramics International,2015,42(2),2227.
43 Zhang D Q, Alkhateeb A, Han H M, et al. Nano Letters,2003,3(7),983.
44 Ho G W, Wong A S W, Kang D J, et al. Nanotechnology,2004,15(8),996.
45 Li L, Chu Y H, Li H J, et al. Ceramics International,2014,40(3),4455.
46 Ke K C, Jiang M, Ding L J, et al. Journal of the American Ceramic Society,2019,102(6),3070.
47 Li H J, He Z B, Chu Y H, et al. Materials Letters,2013,109(1),275.
48 Hu P, Dong S, Zhang D Y, et al. Ceramics International,2016,42(1,Part B),1581.
49 Arendt R H. Journal of Applied Physics,1973,44(7),3300.
50 Zhang J. Study on SiC nanowires assisted by molten salt and their photoluminescence properties. Master's Thesis, Zhengzhou University, China,2016(in Chinese).
张举.熔盐辅助制备SiC纳米线及其光致发光性能研究.硕士学位论文,郑州大学,2016.
51 Xie W, Moebus G, Zhang S W. Journal of Materials Chemistry,2011,21(45),18325.
52 Wu R B, Zhou K, Yang Z H, et al. CrystEngComm,2013,15(3),570.
53 Sun Z G, Qiao X J, Ren Q G, et al. Advanced Powder Technology,2016,27(4),1552.
54 Liu R Z, Liu M L, Chang J X, et al. Chemical Vapor Deposition,2015,21(7?9),196.
55 Longkullabutra H, Nhuapeng W, Thamjaree W. Current Applied Physics,2012,12(S2),S112.
56 Chen X Y, Qin Y M, Jia Q L, et al. Materials Letters,2019,234(1),187.
57 Chen X Y, Zhang Q, Zhou Y, et al. Ceramics International,2018,44(18),22890.
58 Chen X Y, Liu X H, Geng X J, et al. Ceramics International,2018,44(10),11204.
59 Chang J X, Liu R Z, Liu M L, et al. Key Engineering Materials,2016,697(1),841.
60 Yu W P, Zheng Y, Yang E, et al. Journal of Rare Earths,2010,28(3),365.
61 Han W Q, Redlich P, Ernst F, et al. Applied Physics Letters,1999,75(13),1875.
62 Jintakosol T, Singjai P. Key Engineering Materials,2007,353?358(1),2171.
[1] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[2] 杨路, 赵秋莹, 申明霞, 裘进浩. 二氧化锰纤维/聚偏氟乙烯复合材料薄膜的制备及压电性能[J]. 材料导报, 2020, 34(24): 24145-24149.
[3] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[4] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[5] 刘晓, 赖光洪, 许谦, 管佳男, 王子明, 崔素萍, 兰明章. 基于抑制粘土负作用效果的聚羧酸减水剂的设计合成及机理[J]. 材料导报, 2018, 32(22): 3880-3884.
[6] 樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
[7] 赵 兵, 祁 宁, 张德锁, 李青松, 张克勤. 适用于生物体系的自驱动纳米技术研究进展[J]. 材料导报, 2017, 31(1): 126-130.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[4] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[5] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[6] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[7] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[8] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[9] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[10] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed