Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 20040214-11    https://doi.org/10.11896/cldb.20040214
  无机非金属及其复合材料 |
基于MXene柔性压阻传感器研究进展
雷鹏1,2, 鲍艳1,2
1 陕西科技大学轻工科学与工程学院, 西安 710021
2 轻化工程国家级实验教学示范中心(陕西科技大学), 西安 710021
Research Progress of Flexible Piezoresistive Sensor Based on MXene
LEI Peng1,2, BAO Yan1,2
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
2 National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 9080KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性压阻传感器因在个人运动和健康监测等方面具有广阔的应用前景,近年来备受关注。MXene具有优异的导电性、亲水性,且易与其他功能材料复合,尤其是脆性结构使其在受力过程中极易产生微/纳裂纹,进而在制备高灵敏度压阻传感器方面极具优势。要实现人体全范围监测,压阻传感器需同时满足大的工作范围和高的灵敏度。然而,MXene微/纳裂纹的快速扩展导致其导电路径迅速遭到破坏,致使其工作范围较小。因此,近些年研究者们主要从构建各种微/纳结构方面不断尝试,使其在传感过程中保持导电路径的连通性或减缓微/纳裂纹的扩展,从而在充分发挥MXene高灵敏度优势的同时大幅拓宽其工作范围。基于此,本文对MXene的制备方法及压阻传感器的传感机理进行了归纳,然后分别从应变式和压力式两个方面对基于MXene的柔性压阻传感器的制备策略进行了综述,并对MXene基柔性压阻传感器的应用进行了总结,最后对其今后的发展趋势进行了展望,以期为制备大工作范围和高灵敏度的压阻传感器提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷鹏
鲍艳
关键词:  MXene  柔性压阻传感器  传感机理  微/纳结构设计    
Abstract: In recent years, flexible piezoresistive sensors have attracted tremendous attention due to their broad application prospects in individual motion and health monitoring. As a new two-dimensional material, MXene has excellent electrical conductivity and hydrophilicity, and is easy to compound with other functional materials. In particular, it is easy to produce micro/nano cracks during the press process due to its brittle structure, so it is considered as a promising candidate for the preparation of high sensitivity piezoresistive sensors. To achieve full-range monitoring of the human body, the piezoresistive sensor needs to satisfy both large working range and high sensitivity. However, the rapid expansion of micro/nano cracks in MXene leads to the rapid destruction of its conductive path, resulting in a smaller working range. To solve this problem, many resear-chers have focused on the construction of micro/nano structures in recent years, trying to maintain the connectivity of the conductive path or slow down the micro/nano crack propagation while the sensing process, and simultaneously achieve the high sensitivity and wide operating range of MXene based sensors. In this paper, the preparation methods of MXene and the sensing mechanism of piezoresistive sensor were summarized.Then, the preparation strategies of flexible piezoresistive sensor based on MXene were reviewed from strain type and pressure type. Meanwhile, the application of MXene-based flexible piezoresistive sensor was summarized. Finally, the future development trend of MXene-based flexible piezoresistive sensor was prospected. It is expected to provide a reference for the preparation of piezoresistive sensor with large working range and high sensitivity.
Key words:  MXene    flexible piezoresistive sensor    sensing mechanism    micro/nano structural designs
发布日期:  2022-07-26
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(21878181);陕西省重点研发计划(2018ZDXM-GY-118)
通讯作者:  baoyan@sust.edu.cn   
作者简介:  雷鹏,2019年6月毕业于西安工程大学,获得工学硕士学位。现为陕西科技大学轻工科学与工程学院在读博士研究生,在鲍艳教授的指导下进行研究。目前主要研究领域为MXene基柔性压阻传感器。
鲍艳,陕西科技大学轻工科学与工程学院教授、博士研究生导师,享受国务院政府特殊津贴专家。分别于2003年、2008年在陕西科技大学获得学士和博士学位。2008年博士毕业于陕西科技大学并留校至今,从事功能性皮革化学品及有机/无机纳米复合材料的研究,主要包括中空纳米材料的可控制备、功能性复合涂层的制备、表面活性剂及生物基水凝胶的合成等。截止目前,作为项目负责人承担纵向科研项目19项,包括国家重点研发计划子课题、国家自然科学基金等,企业产学研合作项目10项。授权国家发明专利56项;以第一或通讯作者身份发表学术论文126篇,其中被SCI收录51篇,入选ESI高被引论文2篇,论文共计被引2 483次。研究成果获国家技术发明二等奖、国家科学技术进步二等奖、中国轻工业联合会科学技术发明一等奖、全国工人先锋号等25项奖励。入选国家级百千万人才工程、教育部新世纪优秀人才支持计划、陕西省“高层次人才特殊支持计划”青年拔尖人才等人才项目。
引用本文:    
雷鹏, 鲍艳. 基于MXene柔性压阻传感器研究进展[J]. 材料导报, 2022, 36(14): 20040214-11.
LEI Peng, BAO Yan. Research Progress of Flexible Piezoresistive Sensor Based on MXene. Materials Reports, 2022, 36(14): 20040214-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040214  或          http://www.mater-rep.com/CN/Y2022/V36/I14/20040214
1 Li J, Bao R, Tao J, et al. Journal of Materials Chemistry C,2018,6,11878.
2 Trung T Q, Lee N E.Advanced Materials, 2016, 28(22), 4338.
3 Wang X, Liu Z, Zhang T. Small, 2017, 13(25), 1602790.
4 Zhao Y, Huang X. Micromachines, 2017, 8(3), 69.
5 Lee H, Kwon D, Cho H, et al. Scientific Reports, 2017, 7, 39837.
6 Zang Y, Zhang F, Di C A, et al. Materials Horizons,2015,2(2),140.
7 Fiorillo A S, Critello C D, Pulllano S A. Sensors and Actuators A: Physical, 2018, 281, 156.
8 Duan L, D'hooge D R, Cardon L. Progress in Materials Science, 2019, 106, 100617.
9 Liu H, Li Q, Zhang S, et al. Journal of Materials Chemistry C, 2018, 6(45), 12121.
10 Zheng Y, Li Y, Li Z, et al. Composites Science and Technology, 2017, 139, 64.
11 Natarajan T S, Eshwaran S B, Stockelhuber K W, et al. ACS Applied Materials & Interfaces, 2017, 9(5), 4860.
12 Slobodian P, Riha P, Saha P. Carbon, 2012, 50(10), 3446.
13 Zhao S, Li J, Cao D, et al. ACS Applied Materials & Interfaces, 2017, 9(14), 12147.
14 Liu Y, Zheng H, Liu M. Materials & Design, 2018, 141, 276.
15 Slobodian P, Danova R, Olejnik R, et al. Polymers for Advanced Technologies, 2019, 30(7), 1891.
16 Ren J, Zhang W, Wang Y, et al. InfoMat, 2019, 1(3), 396.
17 Jiang T Y, Zhang C, Zeng S, et al. Journal of Chongqing University of Technology(Natural Science), 2021,35(12),173(in Chinese).
江天炎,张程,曾帅,等. 重庆理工大学学报(自然科学),2021,35(12),173.
18 Heo Y, Hwang Y, Jung H S, et al. Small, 2017, 13(23), 1700070.
19 Zhao S, Zhu R. Advanced Materials Technologies,2019,4(9),1900414.
20 Fan X, Wang N, Wang J, et al. Materials Chemistry Frontiers, 2018, 2(2), 355.
21 Niu H, Zhou H, Wang H, et al. Macromolecular Materials and Enginee-ring, 2016, 301(6), 707.
22 Yu G F, Yan X, Yu M, et al. Nanoscale, 2016, 8(5), 2944.
23 Zhao X, Xu L, Chen Q, et al. Advanced Materials Technologies, 2019, 4(9), 1900443.
24 Shi X, Liu S, Sun Y, et al. Advanced Functional Materials, 2018, 28(22), 1800850.
25 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23(37), 4248.
26 Zhang C J, Anasori B, Seral-Ascaso A, et al. Advanced Materials, 2017, 29(36), 1702678.
27 Naguib M, Mochalin V N, Barsoum M W, et al. Advanced Materials, 2014, 26(7), 992.
28 Liu J, Zhang H B, Sun R, et al. Advanced Materials, 2017, 29(38), 1702367.
29 Li X, Yin X, Xu H, et al. ACS Applied Materials & Interfaces, 2018, 10(40), 34524.
30 Liao H, Guo X, Wan P, et al. Advanced Functional Materials, 2019, 29(39), 1904507.
31 Xue Q, Pei Z, Huang Y, et al. Journal of Materials Chemistry A, 2017, 5(39), 20818.
32 Lu M, Zhang Z, Kang L, et al. Journal of Materials Chemistry A, 2019, 7, 12582.
33 Pandey R P, Rasool K, Madhavan V E, et al. Journal of Materials Chemistry A, 2018, 6(8), 3522.
34 Bu F, Zagho M M, Ibrahim Y, et al. Nano Today, 2019, 30, 100803.
35 Lipatov A, Alhabeb M, Lukatskaya M R, et al. Advanced Electronic Materials, 2016, 2(12), 1600255.
36 Nan J, Guo X, Xiao J, et al. Small, 2019, 15, 1902085.
37 Shi C, Beidaghi M, Naguib M, et al. Physical Review Letters, 2014, 112(12), 125501.
38 Urbankowski P, Anasori B, Makaryan T, et al. Nanoscale,2016,8(22),11385.
39 Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Nature,2014,516(7529), 78.
40 Naguib M, Mashtalir O, Carle J, et al. ACS Nano, 2012, 6(2), 1322.
41 Wang F, Yang C, Duan M, et al. Biosensors & Bioelectronics, 2015, 74, 1022.
42 Dillon A D, Ghidiu M J, Krick A L, et al. Advanced Functional Mate-rials, 2016, 26(23), 4162.
43 Amjadi M, Kyung K U, Park I, et al. Advanced Functional Materials, 2016, 26(11), 16788.
44 Hu N, Karube Y, Arai M, et al. Carbon, 2010, 48(3), 680.
45 Liu Q, Chen J, Li Y, et al. ACS Nano, 2016, 10(8), 7901.
46 Lee C J, Park K H, Han C J, et al. Scientific Reports, 2017, 7(1), 7959.
47 Park B, Kim J, Kang D, et al. Advanced Materials,2016,28(37),8130.
48 Liao X, Zhang Z, Kang Z, et al. Materials Horizons, 2017, 4(3), 502.
49 Yang K, Yin F, Xia D, et al. Nanoscale, 2019, 11(20), 9949.
50 Huang S, He G, Yang C, et al. ACS Applied Materials & Interfaces, 2018, 11(1), 1294.
51 Ha S H, Jeon M B, Cho J H. Nanoscale, 2018, 10(11), 5105.
52 Yue Y, Liu N, Liu W, et al. Nano Energy, 2018, 50, 79.
53 Chang T H, Zhang T, Yang H, et al. ACS Nano, 2018, 12(8), 8048.
54 Pu J H, Zhao X, Zha X J, et al. Journal of Materials Chemistry A, 2019, 7(26), 15913.
55 Yang Y, Cao Z, He P, et al. Nano Energy, 2019, 66, 104134.
56 Cai Y, Shen J, Ge G, et al. ACS Nano, 2018, 12(1), 56.
57 Chao M, Wang Y, Ma D, et al. Nano Energy, 2020, 78, 105187.
58 Yang Y, Shi L, Cao Z, et al. Advanced Functional Materials, 2019, 29(14), 1807882.
59 Yang H, Xiao X, Li Z, et al. ACS Nano, 2020, 14(9), 11860.
60 Peng J, Cheng Q. Advanced Materials, 2017, 29(45), 1702959.
61 Zhang Y, Peng J, Li M, et al. ACS Nano, 2018, 12(9), 8901.
62 Wan S, Xu F, Jiang L, et al. Advanced Functional Materials, 2017, 27(10), 1605636.
63 Shi X, Wang H, Xie X, et al. ACS Nano, 2019, 13(1), 649.
64 Li F, Liu Y, Shi X, et al. Nano Letters, 2020, 20(8), 6176.
65 Ma Y, Liu N, Li L, et al. Nature Communications, 2017, 8(1), 1207.
66 Yao H B, Ge J, Wang C F, et al. Advanced Materials, 2013, 25(46), 6692.
67 Wu X, Han Y, Zhang X, et al. Advanced Functional Materials, 2016, 26(34), 6246.
68 Chen H, Su Z, Song Y, et al. Advanced Functional Materials, 2017, 27(3), 1604434.
69 Xu S, Li X, Sui G, et al. Chemical Engineering Journal, 2020, 381, 122666.
70 Zhang H, Liu N, Shi Y, et al. ACS Applied Materials & Interfaces, 2016, 8(34), 22374.
71 Li X P, Li Y, Li X, et al. Journal of Colloid and Interface Science, 2019, 542, 54.
72 Song D, Li X, Li X P, et al. Journal of Colloid and Interface Science, 2019, 555, 751.
73 Ma Y, Yue Y, Zhang H, et al. ACS Nano, 2018, 12(4), 3209.
74 Zhu M, Yue Y, Cheng Y, et al. Advanced Electronic Materials, 2019, 6(2), 1901064.
75 Hu Y, Zhuo H, Luo Q, et al. Journal of Materials Chemistry A, 2019, 7(17), 10273.
76 Zhuo H, Hu Y, Chen Z, et al. Journal of Materials Chemistry A, 2019, 7(14), 8092.
77 White W B, Wolfson L, Guttman C, et al. Journal of the American College of Cardiology, 2011, 57(14), 490.
78 Borges J B, Okamoto V N, Matos G F, et al. American Journal of Respi-ratory and Critical Care Medicine, 2006, 174(3), 268.
79 Wu X, Liao H, Ma D, et al. Journal of Materials Chemistry C, 2019, 8,1788.
[1] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[2] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[3] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[4] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[5] 孙丹, 李伟, 刘峥. 二维纳米材料MXene及其在锂离子电池中的应用研究进展[J]. 材料导报, 2021, 35(15): 15047-15055.
[6] 刘后宝, 傅仁利, 苏新清, 陈旭东, 吴彬勇. MXene材料的结构、性能及在电磁屏蔽领域的应用[J]. 材料导报, 2021, 35(13): 13067-13074.
[7] 郑伟, 杨莉, 张培根, 陈坚, 田无边, 张亚梅, 孙正明. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15): 2513-2537.
[8] 郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 二维纳米材料MXene的研究进展*[J]. CLDB, 2017, 31(9): 1-14.
[9] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed