Abstract: The research and development of rechargeable lithium-ion battery have developed rapidly since its commercialization in the 1990s. However, the research on lithium-ion batteries indicated that the high-rate charge/discharge process reduced the electrochemical performance of lithium-ion batteries. Therefore, many researchers are dedicated to develope advanced electrode materials with excellent electrochemical performance, high energy density and high power density for better energy storage and conversion. Two-dimensional (2D) materials show great energy storage potential due to their unique properties. MXene, a new series of 2D transition metal carbides/nitrides derived from MAX phase precursors has attracted widespread attention recently. Due to its wide chemical and structural diversity, MXene is competitive with other 2D materials in high-power lithium-ion battery applications. It has been found that MXene has excellent physical and chemical properties, including extraordinary mechanical strength, excellent electrical conductivity, a variety of possible surface terminations, excellent specific surface area and the ability to accommodate intercalants. And it shows excellent electrochemical performance when using as an electrode material for lithium-based batteries. Herein, the preparation route, structure type and properties of MXene materials are introduced. The lithium storage mechanism of MXene materials and the latest advances in the applications of MXene in lithium-ion batteries are also reported. Finally, the challenges and prospects of MXene and MXene-based composite materials for lithium-based energy storage devices are summarized. And it is proposed that the heteroatom doping, intercalation, and composite with other electrode materials are becoming new directions for improving the electrochemical performance of MXene materials in LIB.
孙丹, 李伟, 刘峥. 二维纳米材料MXene及其在锂离子电池中的应用研究进展[J]. 材料导报, 2021, 35(15): 15047-15055.
SUN Dan, LI Wei, LIU Zheng. Two-dimensional Nanomaterial MXene and Its Research Advances on Applications in Lithium-ion Batteries. Materials Reports, 2021, 35(15): 15047-15055.
1 Li Z, Xiang K, Xing W, et al. Advanced Energy Materials,2015,5,1401410. 2 Kim H, Hong J, Park K Y, et al. Chemical Reviews,2014,114,11788. 3 Peng L F. Synthesis of 3D hierarchical MoS2 nanoarchitectures for lithium ion batteries property. Master’s Thesis, Zhengzhou University of Light Industry,China,2019(in Chinese). 彭丽芳.3D分级结构MoS2材料的制备及锂离子电池性能研究.硕士学位论文,郑州轻工业大学,2019. 4 Sun N, Yang B Y, Zheng J C, et al. Ceramics International,2018,44,16214. 5 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials,2011,23(37),4248. 6 Anasori B, Lukatskaya M R, Gogotsi Y. Nature Reviews Materials,2017,2,16098. 7 Naguib M, Mochalin V N, Barsoum M W, et al. Advanced Materials,2014,26,992. 8 Naguib M, Mashtalir O, Carle J, et al. ACS Nano,2012,6,1322. 9 Tang X, Guo X, Wu W J, et al. Advanced Energy Materials,2018,8,1801897. 10 Mashtalir O, Naguib M, Mochalin V N, et al. Nature Communications,2013,4,1716. 11 Naguib M, Unocic R R, Armstrong B L. Dalton Transactions,2015,44,9353. 12 Maleski K, Mochalin V N, Gogotsi Y. Chemistry of Materials,2017,29,1632. 13 Ling Z, Ren C E, Zhao M Q, et al. Proceedings of the National Academy of Sciences of the United States of America,2014,111,16676. 14 Alhabeb M, Maleski K, Mathis T S, et al. Angewandte Chemie International Edition,2018,57,5444. 15 Xuan J, Wang Z, Chen Y, et al. Angewandte Chemie International Edition,2016,55(47),14569. 16 Li T, Yao L, Liu Q, et al. Angewandte Chemie International Edition,2018,57,6115. 17 Alhabeb M, Maleski K, Anasori B, et al. Chemistry of Materials,2017,29(18),7633. 18 Sang X, Xie Y, Lin M W, et al. ACS Nano,2016,10(10),9193. 19 Zhang X, Zhang Z, Zhou Z. Journal of Energy Chemistry,2017,27,73. 20 Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Nature,2014,516,78. 21 Lukatskaya M R, Mashtalir O, Ren C E, et al. Science,2013,341,1502. 22 Xu C, Wang L B, Liu Z B, et al. Nature Materials,2015,14,1135. 23 Ye Q, Xiao P, Liu W L, et al. RSC Advances,2015,5,70339. 24 Urbankowski P, Anasori B, Makaryan T, et al. Nanoscale,2016,8(22),11385. 25 Xiao X, Yu H M, Jin H Y, et al. ACS Nano,2017,11(2),2180. 26 Xie Y, Naguib M, Mochalin V N, et al. Journal of the American Chemical Society,2014,136(17),6385. 27 Lai S, Jeon J, Jang S K, et al. Nanoscale,2015,7,19390. 28 Tang Q, Zhou Z, Shen P. Journal of the American Chemical Society,2012,134,16909. 29 Karlsson L H, Birch J, Halim J, et al. Nano Letters,2015,15(8),4955. 30 Wang X, Shen X, Gao Y, et al. Journal of the American Chemical Society,2015,137(7),2715. 31 Fan K, Ying Y, Li X, et al. The Journal of Physical Chemistry C,2019,123(30),18207. 32 Xie Y, Kent P R C. Physical Review B,2013,87,235441. 33 Enyashin A N, Ivanovskii A L. Computational and Theoretical Chemistry,2012,989,27. 34 Khazaei M, Arai M, Sasaki T, et al. Advanced Functional Functional Materials,2013,23(17),2185. 35 Kurtoglu M, Naguib M, Gogotsi Y, et al. MRS Communications,2012,2,133. 36 Guo Z, Zhou J, Si C, et al. Physical Chemistry Chemical Physics,2015,17,15348. 37 Zha X H, Luo K, Li Q, et al. EPL,2015,16,26007. 38 Wu X, Hao L, Zhang J, et al. Journal of Membrane Science,2016,515(1),175. 39 Zhang H, Wang L, Chen Q, et al. Materials & Design,2016,92,682. 40 Rodrigo M R, Cleber F N, Araujoc C M, et al. Applied Surface Science,2020,30(528),146526. 41 Zhao S, Kang W, Xue J. Journal of Materials Chemistry C,2015,3(4),879. 42 Khazaei M, Arai M, Sasaki T, et al. Advanced Functional Materials,2013,23(17),2185. 43 Iqbal M, Fatheema J, Noor Q, et al. Materials Today Chemistry,2020,16,100271. 44 Rafiq S, Awan S, Zheng R K, et al. Journal of Magnetism and Magnetic Materials,2020,497(1),165954. 45 Cheng R, Hu T, Zhang H, et al. The Journal of Physical Chemistry C,2019,123,1099. 46 Wu J B, Wang Y, Zhang Y P, et al. Journal of Energy Chemistry,2020,47,203. 47 Eames C, Islam M S. Journal of the American Chemical Society,2014,136,10691. 48 Xiong D, Li X, Bai Z, et al. Small,2018,14,1703419. 49 Yao S S, Li N, Ye H Q, et al. Progress in Chemistry,2018,30(7),932(in Chinese). 姚送送,李诺,叶红齐,等.化学进展,2018,30(7),932. 50 Naguib M, Come J, Dyatkin B, et al. Electrochemistry Communications,2012,16(1),61. 51 Come J, Naguib M, Rozier P, et al. Journal of the Electrochemical Society,2012,159(8),1005. 52 Wu H, Guo Z, Zhou J, et al. Applied Surface Science,2019,488,578. 53 Lu M, Li H, Han W, et al. Journal of Energy Chemistry,2019,4,148. 54 Xie Y, Dall’Agnese Y, Naguib M, et al. ACS Nano,2014,8,9606. 55 Sun D, Hu Q, Chen J, et al. ACS Applied Materials & Interfaces,2016,8(1),74. 56 Qi X, Chen X, Peng S K, et al. Journal of Materials Engineering,2019,47(12),10(in Chinese). 齐新,陈翔,彭思侃,等.材料工程,2019,47(12),10. 57 Li J, Han L, Li Y, et al. Chemical Engineering Journal,2020,380,122590. 58 Zhang C F, Kim S J, Ghidiu M, et al. Advanced Functional Materials,2016,26(23),4143. 59 Li L, Wang F, Zhu J, et al. Dalton Transactions,2017,46,14880. 60 Ahmed B, Anjum D H, Hedhili M N, et al. Nanoscale,2016,8,7580. 61 Mashtalir O, Naguib M, Mochalin V N, et al. Nature Communications,2013,4,1716. 62 Sun D D, Wang M S, Li Z Y, et al. Electrochemistry Communications,2014,47,80. 63 Wu X, Wang Z, Yu M, et al. Advanced Materials,2017,29,1607017. 64 Wang F, Wang Z J, Zhu J F, et al. Materials Science,2017,52,3556. 65 Ahmed B, Anjum D H, Gogotsi Y, et al. Nano Energy,2017,34,249. 66 Zheng M, Guo R, Liu Z, et al. Journal of Alloys and Compounds,2018,735,1262. 67 Jiang F, Du R, Yan X, et al. Electrochimica Acta,2020,329,135146. 68 Zhu X, Shen J, Chen X, et al. Chemical Engineering Journal,2019,378,122212. 69 Luo J, Tao X, Zhang J, et al. ACS Nano,2016,10,2491. 70 Wang Z, Wang F, Liu K, et al. Journal of Nanomaterials,2019,10,9082132. 71 Zhang H, Zhang P, Zheng W, et al. Electrochimica Acta,2018,285,94. 72 Shen C, Wang L, Zhou A G, et al. Journal of the Electrochemical Society,2017,164,A2654. 73 Xue C, He Y, Liu Y, et al. Ionics,2019,25,3069. 74 Lin Z Y, Sun D F, Huang Q, et al. Journal of Materials Chemistry A,2015,3,14096. 75 Huang Y, Yang H, Zhang Y, et al. Journal of Materials Chemistry A,2019,7,11250. 76 Yang C, Liu Y, Sun X, et al. Electrochimica Acta,2018,271,165. 77 Kim S J, Naguib M, Zhao M Q, et al. Electrochimica Acta,2015,163,246. 78 Shen C, Cao Y, Zhou A, et al. Journal of Alloys and Compounds,2018,735,530. 79 Ren C, Zhao M Q, Makaryan T, et al. ChemElectroChem,2016,3,689. 80 Mu G, Mu D, Wu B, et al. Small,2020,61(3),1905430. 81 Wang X, Wang S, Qin J, et al. Inorganic Chemistry,2019,58,16524. 82 Zou G, Zhang Z, Guo J, et al. ACS Applied Materials & Interfaces,2016,8,22280. 83 Liu F F, Zhou J, Wang S W, et al. Journal of the Electrochemical Society,2017,164,A709. 84 Naguib M, Halim J, Lu J, et al. Journal of the American Chemical Society,2013,135,15966. 85 Wang C, Chen S, Xie H, et al. Advanced Energy Materials,2019,9,1802977. 86 Wang C, Xie H, Chen S, et al. Advanced Materials,2018,30(32),e1802525. 87 Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Advanced Materials,2015,27,3501. 88 Zhao S, Meng X, Zhu K, et al. Energy Storage Materials,2017,8,42. 89 Li X, Qian Y, Liu T, et al. Material Science,2018,53,11078. 90 Xu L, Zhou F, Zhou H, et al. Electrochimica Acta,2018,289,120. 91 Wei C, Fei H, An Y, et al. Electrochimica Acta,2019,309,362. 92 Liao S Y, Huang X W, Rao Q S, et al. Journal of Materials Chemistry A,2020,8(8),4494. 93 Liu Y Y, Li J L, Yu Y, et al. International Journal of Energy Research,2020,40(6),4717. 94 Pan Q, Zheng Y, Kota S, et al. Nanoscale Advances,2019,1,395.