Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15047-15055    https://doi.org/10.11896/cldb.20030032
  无机非金属及其复合材料 |
二维纳米材料MXene及其在锂离子电池中的应用研究进展
孙丹, 李伟, 刘峥
桂林理工大学化学与生物工程学院,桂林 541004
Two-dimensional Nanomaterial MXene and Its Research Advances on Applications in Lithium-ion Batteries
SUN Dan, LI Wei, LIU Zheng
College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
下载:  全 文 ( PDF ) ( 6219KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自20世纪90年代可充电锂离子电池商业化以来,其研究与开发迅速发展。然而研究表明,在锂离子电池中,高速率充电/放电过程会降低锂离子电池的电化学性能。因此,众多研究者致力于开发具有优异的电化学性能、高能量密度和高功率密度的先进电极材料,以进行更好的能量存储和转换。二维(2D)材料由于其独特的性能而表现出巨大的储能潜力。
近年来,衍生自MAX相前驱体的2D过渡金属碳化物/氮化物新系列MXene引起了广泛关注。MXene具有化学和结构多样性,因此与其他2D材料相比,在高功率锂离子电池应用中具有竞争力。研究发现,MXene具有优异的物理及化学性质,其中包括非凡的机械强度、出色的导电性、多种可能的表面终止、优异的比表面积以及容纳嵌入剂的能力。当用作锂基电池的电极材料时,MXene已表现出卓越的电化学性能。
文中对MXene材料制备路线、结构类型及性质进行介绍,并进一步介绍了MXene材料的储锂机理,归纳总结了MXene在锂离子电池中应用研究的最新进展,最后概述了用于锂基能量存储设备的MXene和MXene基复合材料的挑战和前景,并提出杂原子掺杂、插层以及与其他电极材料复合正成为改善MXene材料在LIB中电化学性能的新方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙丹
李伟
刘峥
关键词:  MXene  锂离子电池  电极材料  储能    
Abstract: The research and development of rechargeable lithium-ion battery have developed rapidly since its commercialization in the 1990s. However, the research on lithium-ion batteries indicated that the high-rate charge/discharge process reduced the electrochemical performance of lithium-ion batteries. Therefore, many researchers are dedicated to develope advanced electrode materials with excellent electrochemical performance, high energy density and high power density for better energy storage and conversion. Two-dimensional (2D) materials show great energy storage potential due to their unique properties.
MXene, a new series of 2D transition metal carbides/nitrides derived from MAX phase precursors has attracted widespread attention recently. Due to its wide chemical and structural diversity, MXene is competitive with other 2D materials in high-power lithium-ion battery applications. It has been found that MXene has excellent physical and chemical properties, including extraordinary mechanical strength, excellent electrical conductivity, a variety of possible surface terminations, excellent specific surface area and the ability to accommodate intercalants. And it shows excellent electrochemical performance when using as an electrode material for lithium-based batteries.
Herein, the preparation route, structure type and properties of MXene materials are introduced. The lithium storage mechanism of MXene materials and the latest advances in the applications of MXene in lithium-ion batteries are also reported. Finally, the challenges and prospects of MXene and MXene-based composite materials for lithium-based energy storage devices are summarized. And it is proposed that the heteroatom doping, intercalation, and composite with other electrode materials are becoming new directions for improving the electrochemical performance of MXene materials in LIB.
Key words:  MXene    lithium-ion battery    electrode material    energy storage
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TM912  
基金资助: 广西自然科学基金项目(2018GXNSFBA281114);国家自然科学基金项目(52004076)
作者简介:  孙丹,桂林理工大学硕士研究生,主要研究方向为纳米材料的制备及应用。
李伟,桂林理工大学化学与生物工程学院助理研究员,博士生在读,2012年硕士毕业于桂林理工大学化学与生物工程学院应用化学专业。目前主要从事新能源环境材料方面的研究,主持国家青年基金1项,省部级基金2项。
刘峥,桂林理工大学化学与生物工程学院教授,博士研究生导师,2006年博士毕业于湘潭大学高分子化学与物理专业。目前主要从事能源材料、耐腐蚀材料等功能材料的制备及应用研究。
引用本文:    
孙丹, 李伟, 刘峥. 二维纳米材料MXene及其在锂离子电池中的应用研究进展[J]. 材料导报, 2021, 35(15): 15047-15055.
SUN Dan, LI Wei, LIU Zheng. Two-dimensional Nanomaterial MXene and Its Research Advances on Applications in Lithium-ion Batteries. Materials Reports, 2021, 35(15): 15047-15055.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030032  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15047
1 Li Z, Xiang K, Xing W, et al. Advanced Energy Materials,2015,5,1401410.
2 Kim H, Hong J, Park K Y, et al. Chemical Reviews,2014,114,11788.
3 Peng L F. Synthesis of 3D hierarchical MoS2 nanoarchitectures for lithium ion batteries property. Master’s Thesis, Zhengzhou University of Light Industry,China,2019(in Chinese).
彭丽芳.3D分级结构MoS2材料的制备及锂离子电池性能研究.硕士学位论文,郑州轻工业大学,2019.
4 Sun N, Yang B Y, Zheng J C, et al. Ceramics International,2018,44,16214.
5 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials,2011,23(37),4248.
6 Anasori B, Lukatskaya M R, Gogotsi Y. Nature Reviews Materials,2017,2,16098.
7 Naguib M, Mochalin V N, Barsoum M W, et al. Advanced Materials,2014,26,992.
8 Naguib M, Mashtalir O, Carle J, et al. ACS Nano,2012,6,1322.
9 Tang X, Guo X, Wu W J, et al. Advanced Energy Materials,2018,8,1801897.
10 Mashtalir O, Naguib M, Mochalin V N, et al. Nature Communications,2013,4,1716.
11 Naguib M, Unocic R R, Armstrong B L. Dalton Transactions,2015,44,9353.
12 Maleski K, Mochalin V N, Gogotsi Y. Chemistry of Materials,2017,29,1632.
13 Ling Z, Ren C E, Zhao M Q, et al. Proceedings of the National Academy of Sciences of the United States of America,2014,111,16676.
14 Alhabeb M, Maleski K, Mathis T S, et al. Angewandte Chemie International Edition,2018,57,5444.
15 Xuan J, Wang Z, Chen Y, et al. Angewandte Chemie International Edition,2016,55(47),14569.
16 Li T, Yao L, Liu Q, et al. Angewandte Chemie International Edition,2018,57,6115.
17 Alhabeb M, Maleski K, Anasori B, et al. Chemistry of Materials,2017,29(18),7633.
18 Sang X, Xie Y, Lin M W, et al. ACS Nano,2016,10(10),9193.
19 Zhang X, Zhang Z, Zhou Z. Journal of Energy Chemistry,2017,27,73.
20 Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Nature,2014,516,78.
21 Lukatskaya M R, Mashtalir O, Ren C E, et al. Science,2013,341,1502.
22 Xu C, Wang L B, Liu Z B, et al. Nature Materials,2015,14,1135.
23 Ye Q, Xiao P, Liu W L, et al. RSC Advances,2015,5,70339.
24 Urbankowski P, Anasori B, Makaryan T, et al. Nanoscale,2016,8(22),11385.
25 Xiao X, Yu H M, Jin H Y, et al. ACS Nano,2017,11(2),2180.
26 Xie Y, Naguib M, Mochalin V N, et al. Journal of the American Chemical Society,2014,136(17),6385.
27 Lai S, Jeon J, Jang S K, et al. Nanoscale,2015,7,19390.
28 Tang Q, Zhou Z, Shen P. Journal of the American Chemical Society,2012,134,16909.
29 Karlsson L H, Birch J, Halim J, et al. Nano Letters,2015,15(8),4955.
30 Wang X, Shen X, Gao Y, et al. Journal of the American Chemical Society,2015,137(7),2715.
31 Fan K, Ying Y, Li X, et al. The Journal of Physical Chemistry C,2019,123(30),18207.
32 Xie Y, Kent P R C. Physical Review B,2013,87,235441.
33 Enyashin A N, Ivanovskii A L. Computational and Theoretical Chemistry,2012,989,27.
34 Khazaei M, Arai M, Sasaki T, et al. Advanced Functional Functional Materials,2013,23(17),2185.
35 Kurtoglu M, Naguib M, Gogotsi Y, et al. MRS Communications,2012,2,133.
36 Guo Z, Zhou J, Si C, et al. Physical Chemistry Chemical Physics,2015,17,15348.
37 Zha X H, Luo K, Li Q, et al. EPL,2015,16,26007.
38 Wu X, Hao L, Zhang J, et al. Journal of Membrane Science,2016,515(1),175.
39 Zhang H, Wang L, Chen Q, et al. Materials & Design,2016,92,682.
40 Rodrigo M R, Cleber F N, Araujoc C M, et al. Applied Surface Science,2020,30(528),146526.
41 Zhao S, Kang W, Xue J. Journal of Materials Chemistry C,2015,3(4),879.
42 Khazaei M, Arai M, Sasaki T, et al. Advanced Functional Materials,2013,23(17),2185.
43 Iqbal M, Fatheema J, Noor Q, et al. Materials Today Chemistry,2020,16,100271.
44 Rafiq S, Awan S, Zheng R K, et al. Journal of Magnetism and Magnetic Materials,2020,497(1),165954.
45 Cheng R, Hu T, Zhang H, et al. The Journal of Physical Chemistry C,2019,123,1099.
46 Wu J B, Wang Y, Zhang Y P, et al. Journal of Energy Chemistry,2020,47,203.
47 Eames C, Islam M S. Journal of the American Chemical Society,2014,136,10691.
48 Xiong D, Li X, Bai Z, et al. Small,2018,14,1703419.
49 Yao S S, Li N, Ye H Q, et al. Progress in Chemistry,2018,30(7),932(in Chinese).
姚送送,李诺,叶红齐,等.化学进展,2018,30(7),932.
50 Naguib M, Come J, Dyatkin B, et al. Electrochemistry Communications,2012,16(1),61.
51 Come J, Naguib M, Rozier P, et al. Journal of the Electrochemical Society,2012,159(8),1005.
52 Wu H, Guo Z, Zhou J, et al. Applied Surface Science,2019,488,578.
53 Lu M, Li H, Han W, et al. Journal of Energy Chemistry,2019,4,148.
54 Xie Y, Dall’Agnese Y, Naguib M, et al. ACS Nano,2014,8,9606.
55 Sun D, Hu Q, Chen J, et al. ACS Applied Materials & Interfaces,2016,8(1),74.
56 Qi X, Chen X, Peng S K, et al. Journal of Materials Engineering,2019,47(12),10(in Chinese).
齐新,陈翔,彭思侃,等.材料工程,2019,47(12),10.
57 Li J, Han L, Li Y, et al. Chemical Engineering Journal,2020,380,122590.
58 Zhang C F, Kim S J, Ghidiu M, et al. Advanced Functional Materials,2016,26(23),4143.
59 Li L, Wang F, Zhu J, et al. Dalton Transactions,2017,46,14880.
60 Ahmed B, Anjum D H, Hedhili M N, et al. Nanoscale,2016,8,7580.
61 Mashtalir O, Naguib M, Mochalin V N, et al. Nature Communications,2013,4,1716.
62 Sun D D, Wang M S, Li Z Y, et al. Electrochemistry Communications,2014,47,80.
63 Wu X, Wang Z, Yu M, et al. Advanced Materials,2017,29,1607017.
64 Wang F, Wang Z J, Zhu J F, et al. Materials Science,2017,52,3556.
65 Ahmed B, Anjum D H, Gogotsi Y, et al. Nano Energy,2017,34,249.
66 Zheng M, Guo R, Liu Z, et al. Journal of Alloys and Compounds,2018,735,1262.
67 Jiang F, Du R, Yan X, et al. Electrochimica Acta,2020,329,135146.
68 Zhu X, Shen J, Chen X, et al. Chemical Engineering Journal,2019,378,122212.
69 Luo J, Tao X, Zhang J, et al. ACS Nano,2016,10,2491.
70 Wang Z, Wang F, Liu K, et al. Journal of Nanomaterials,2019,10,9082132.
71 Zhang H, Zhang P, Zheng W, et al. Electrochimica Acta,2018,285,94.
72 Shen C, Wang L, Zhou A G, et al. Journal of the Electrochemical Society,2017,164,A2654.
73 Xue C, He Y, Liu Y, et al. Ionics,2019,25,3069.
74 Lin Z Y, Sun D F, Huang Q, et al. Journal of Materials Chemistry A,2015,3,14096.
75 Huang Y, Yang H, Zhang Y, et al. Journal of Materials Chemistry A,2019,7,11250.
76 Yang C, Liu Y, Sun X, et al. Electrochimica Acta,2018,271,165.
77 Kim S J, Naguib M, Zhao M Q, et al. Electrochimica Acta,2015,163,246.
78 Shen C, Cao Y, Zhou A, et al. Journal of Alloys and Compounds,2018,735,530.
79 Ren C, Zhao M Q, Makaryan T, et al. ChemElectroChem,2016,3,689.
80 Mu G, Mu D, Wu B, et al. Small,2020,61(3),1905430.
81 Wang X, Wang S, Qin J, et al. Inorganic Chemistry,2019,58,16524.
82 Zou G, Zhang Z, Guo J, et al. ACS Applied Materials & Interfaces,2016,8,22280.
83 Liu F F, Zhou J, Wang S W, et al. Journal of the Electrochemical Society,2017,164,A709.
84 Naguib M, Halim J, Lu J, et al. Journal of the American Chemical Society,2013,135,15966.
85 Wang C, Chen S, Xie H, et al. Advanced Energy Materials,2019,9,1802977.
86 Wang C, Xie H, Chen S, et al. Advanced Materials,2018,30(32),e1802525.
87 Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Advanced Materials,2015,27,3501.
88 Zhao S, Meng X, Zhu K, et al. Energy Storage Materials,2017,8,42.
89 Li X, Qian Y, Liu T, et al. Material Science,2018,53,11078.
90 Xu L, Zhou F, Zhou H, et al. Electrochimica Acta,2018,289,120.
91 Wei C, Fei H, An Y, et al. Electrochimica Acta,2019,309,362.
92 Liao S Y, Huang X W, Rao Q S, et al. Journal of Materials Chemistry A,2020,8(8),4494.
93 Liu Y Y, Li J L, Yu Y, et al. International Journal of Energy Research,2020,40(6),4717.
94 Pan Q, Zheng Y, Kota S, et al. Nanoscale Advances,2019,1,395.
[1] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[2] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[3] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[4] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[5] 杨婷, 胡新宇, 王文磊. 硬脂酸锌热解ZnO@C复合材料的储锂性能[J]. 材料导报, 2021, 35(8): 8007-8010.
[6] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[7] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[8] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[9] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[10] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[11] 易润华, 邓黎鹏, 程东海, 刘奋成. 基于多指标综合评分方差分析的镍铬合金储能缝焊工艺研究[J]. 材料导报, 2021, 35(14): 14161-14165.
[12] 王成君, 段志英, 王爱军, 王志超, 崔璐娟, 苏琼. 基于共晶系相变材料的研究进展[J]. 材料导报, 2021, 35(13): 13058-13066.
[13] 刘后宝, 傅仁利, 苏新清, 陈旭东, 吴彬勇. MXene材料的结构、性能及在电磁屏蔽领域的应用[J]. 材料导报, 2021, 35(13): 13067-13074.
[14] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[15] 张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(Z2): 30-36.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed