Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13058-13066    https://doi.org/10.11896/cldb.20040110
  无机非金属及其复合材料 |
基于共晶系相变材料的研究进展
王成君, 段志英, 王爱军, 王志超, 崔璐娟, 苏琼*
西北民族大学化工学院,甘肃省高校环境友好复合材料及生物质利用省级重点实验室,兰州 730030
Research Progress of Eutectic Phase Change Materials
WANG Chengjun, DUAN Zhiying, WANG Aijun, WANG Zhichao, CUI Lujuan, SU Qiong*
Key Laboratory of Utility of Environmental Friendly Composite Materials and Biomass in Universities of Gansu Province, School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
下载:  全 文 ( PDF ) ( 3174KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于相变材料的热能储存技术已被公认为是提高可再生能源利用效率和保护环境的先进能源技术之一。相变材料(PCMs)可以作为储能介质,在熔融或凝固过程中,PCMs可以在几乎恒定的温度下储存或释放大量的能量,被广泛应用于潜热储能系统和热管理系统中。相变温度是对相变材料进行选择的一个重要参数。通常具有特定要求相变温度的PCMs不存在,并且单一相变材料的相变温度和潜热比较固定,也难以同时满足对潜热、相变温度等的要求。因此,许多学者开展了二元或多元共晶相变体系的研究。文中介绍了近年来国内外共晶相变储能材料及其复合材料的研究进展及应用;探讨了共晶相变储能材料的相变理论推测及热力学建模;针对共晶体系在应用过程中存在的过冷、相分离、热导率低及相变时易泄露等问题,详述了解决这些问题的方法及进展,并提出了相关建议;最后对共晶系相变材料的热力学模型的建立与设计、热传导及循环稳定性等研究重点进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王成君
段志英
王爱军
王志超
崔璐娟
苏琼
关键词:  共晶  相变材料  储能  复合材料    
Abstract: Thermal energy storage technology based on phase change materials has been recognized as one of the advanced energy technologies to improve the utilization efficiency of renewable energy and protect the environment. Phase change materials (PCMs) can be used as energy storage medium. In the process of melting or solidification, PCMs can store or release a large amount of energy at almost constant temperature, so it is widely used in latent energy storage system and thermal management system. Phase transition temperature is an important parameter for the selection of phase change materials. Usually, there is no PCMs with specific phase transition temperature, and the phase transition temperature and latent heat of a single phase change material are relatively fixed, so it is difficult to meet the requirements of latent heat and phase transition temperature at the same time. Therefore, many scholars have carried out the study of binary or multicomponent eutectic phase transition systems. This paper introduces the research progress and application of eutectic phase change energy storage materials and their composites at home and abroad in recent years. The phase transformation theory and thermodynamic modeling of eutectic phase change energy storage mate-rials are discussed. In view of the problems existing in the application of eutectic system, such as undercooling, phase separation, low thermal conductivity and easy leakage during phase transformation, the methods and progress to solve these problems are described in detail, and relevant suggestions are put forward. Finally, the establishment and design of thermodynamic model, heat conduction and cycle stability of eutectic phase change materials are prospected.
Key words:  eutectic    phase change material    thermal energy storage    composite material
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TK02  
基金资助: 中央高校基本科研业务费专项资金(31920210063);甘肃省教育厅创新基金(2021B-065);国家自然科学基金(21968032;51563022)
作者简介:  王成君,西北民族大学化工学院讲师,2012年在兰州理工大学化学工艺专业取得硕士学位,先后主持甘肃省青年科技基金一项,中央高校基本科研业务项目一项,参与国家自然基金一项,甘肃省自然科学基金一项。近年来,在相变材料储能领域发表论文8篇。
苏琼,西北民族大学化工学院教授,2009年在兰州大学有机化学专业取得硕士学位,先后主持国家自然科学基金2项,甘肃省自然科学基金1项,中央高校基本科研业务项目4项。近年来,在功能及复合材料领域发表论文20余篇。
引用本文:    
王成君, 段志英, 王爱军, 王志超, 崔璐娟, 苏琼. 基于共晶系相变材料的研究进展[J]. 材料导报, 2021, 35(13): 13058-13066.
WANG Chengjun, DUAN Zhiying, WANG Aijun, WANG Zhichao, CUI Lujuan, SU Qiong. Research Progress of Eutectic Phase Change Materials. Materials Reports, 2021, 35(13): 13058-13066.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040110  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13058
1 Hussain A, Arif S M, Aslam M, et al. Renewable & Sustainable Energy Reviews,2017,71,12.
2 Zhang N, Yuan Y, Cao X, et al. Advanced Engineering Materials,2018,20,1700753.
3 Koohi-Fayegh S, Rosen M A. Journal of Energy Storage,2020,27,101047.
4 Ahmed S F, Khalid M, Rashmi W, et al. Renewable & Sustainable Energy Reviews,2017,67,450.
5 Chen T, Sun H X, Zhu Z Q, et al. Chemical Industry and Engineering Progress,2019,38(7),3265(in Chinese).
陈涛,孙寒雪,朱照祺,等.化工进展,2019,38(7),3265.
6 Chen Y, Jiang Q H, Xin J W, et al. Joural of Materials Engineering,2019,47(7),1(in Chinese).
陈颖,姜庆辉,辛集武,等.材料工程,2019,47(7),1.
7 Zhang Y P, Su Y H, Ge X S. Journal of China University of Science and Technology,1995(4),474(in Chinese).
张寅平,苏跃红,葛新石.中国科学技术大学学报,1995(4),474.
8 Zhao P, Yue Q, He H, et al. Applied Energy,2014,115,483.
9 Diarce G, Gandarias I, Campos-Celador A, et al. Solar Energy Materials and Solar Cells,2015,134,215.
10 Kumar R, Vyas S, Dixit A. Solar Energy,2017,155,1373.
11 Verma P, Singal S K. Renewable and Sustainable Energy Reviews,2008,12(4),999.
12 Ushak S, Vega M, Lovera-Copa J A, et al. Solar Energy Materials and Solar Cells,2020,209,110475.
13 Blanco-Rodríguez P, Rodríguez-Aseguinolaza J, Risueo E, et al. Energy,2014,72,414.
14 Liu Y S, Yang Y Z. Applied Thermal Engineering,2017,112,606.
15 He M Z, Yang L W, Zhang Z T. IOP Conf. Series: Earth and Environmental Science,2018,108,022058.
16 Fang Y, Su J, Tang Y, et al. International Journal of Energy Research,2020,44(4),3171.
17 Jiang Y, Sun Y, Liu M, et al. Solar Energy Materials and Solar Cells,2016,152,155.
18 Diarce G, Corro-Martínez E, Quant L, et al. Solar Energy Materials and Solar Cells,2016,157,1065.
19 Li S, Lin S, Ling Z, et al. Industrial & Engineering Chemistry Research,2020.59(14),6751.
20 Shen C, Li X, Yang G, et al. Chemical Engineering Journal,2020,385,123958.
21 Wu L B, Chen W, Qian J. Packaging Engineering,2017,38(9),113(in Chinese).
吴丽彬,陈威,钱静.包装工程,2017,38(9),113.
22 Saeed R M, Schlegel J P, Castano C, et al. Journal of Energy Storage,2017,13,418.
23 Kele S, Kaygusuz K, Sar A. International Journal of Energy Research,2005,29(9),857.
24 Zuo J, Li W, Weng L. Energy and Buildings,2011,43(1),207.
25 Veerakumar C, Sreekumar A. Energy Technology,2018,6(2),397.
26 Purohit K, Murty V V S, Dixit R C, et al. Bulletin of Materials Science,2019,42(3),119.
27 Ma G, Sun J, Zhang Y, et al. Chemical Physics Letters,2019,714,166.
28 Ghadim H B, Shahbaz K, Al-Shannaq R, et al. International Journal of Energy Research,2019,43(14),8536.
29 Diao F G, Cai J H, Sun J P, et al. Acta Metrology Sinica,2019,40(3),421(in Chinese).
刁福广,蔡晋辉,孙建平,等.计量学报,2019,40(3),421.
30 Dong O, Li D, Zeng D. Calphad,2018,63,92.
31 Ushak S, Vega M, Lovera-Copa J A, et al. Solar Energy Materials and Solar Cells,2020,209,110475.
32 Ke H. Applied Thermal Engineering,2017,113,1319.
33 Huang X, Chen X, Li A, et al. Chemical Engineering Journal,2019,356,641.
34 Wang C, Liang W, Chen P, et al. Chemistry Select,2019,4(24),7108.
35 Ren H, Tang M, Guan B, et al. Advanced Materials,2017,29(38),1702590.
36 Zhang W, Zhang X, Huang Z, et al. Journal of Materials Science & Technology,2018,34(2),379.
37 Xu Q, Akkurt N, Zou Z, et al. Journal of Thermal Science,2020,29(2),477.
38 Xing Jingchen, Yang Keyan, Zhou Yucheng, et al. Energy and Buil-dings,2019,209,109663.
39 Wang C J, Liang W, Tang Z, et al. Applied Clay Science,2020,189,105535.
40 Wang C J, Liang W, Yang Y, et al. Renewable Energy,2020,153,182.
41 Alva G, Huang X, Liu L, et al. Applied Energy,2017,203,677.
42 Nomura T, Yoolerd J, Sheng N, et al. Solar Energy Materials and Solar Cells,2018,187,255.
43 Wang J X, Wang J, Huang C X, et al. Journal of Composites,2019,36(3),730(in Chinese).
王俊霞,王军,黄崇杏,等.复合材料学报,2019,36(3),730.
44 Pethurajan V, Suresh S, Mojiri A, et al. Solar Energy Materials and Solar Cells,2020,206,110308.
45 Liu X, Sun Z G, Chen Z F, et al. New Chemical Materials,2019,47(8),131(in Chinese).
刘晓,孙志高,陈之帆,等.化工新型材料,2019,47(8),131.
46 Liu M R, Sun Z G, Li C H, et al. Acta Solar Sinica,2019(6),10(in Chinese).
刘旻瑞,孙志高,李成浩,等.太阳能学报,2019(6),10.
47 Fang Y, Ding Y, Tang Y, et al. Applied Thermal Engineering,2019,150,1177.
48 Raj C R, Suresh S, Upadhyay A, et al. Materials Science Forum,2020,978,407.
49 Golestaneh S I, Mosallanejad A, Karimi G, et al. Applied energy,2016,182,409.
50 Ke H, Wei Q. Thermochimica Acta,2019,671,10.
51 Khan M I H, Afroz H M M. Asian Journal of Applied Sciences,2013,6(2),56.
52 Zarajabad O G, Ahmadi R. Journal of Energy Storage,2018,17,515.
53 Abdolmaleki L, Sadrameli S M, Pirvaram A. Renewable Energy,2020,145,233.
54 Coccia G, Di Nicola G, Tomassetti S, et al. Solar Energy,2018,170,1016.
55 Narayanan S S, Kardam A, Kumar V, et al. Resource-Efficient Technologies,2017,3(3),272.
56 Zhang J, Wang Z, Li X, et al. Solar Energy,2020,196,419.
57 Sun W, Huang R, Ling Z, et al. Energy Conversion and Management,2018,177,306.
58 Sar A, Sharma R K, Hekimoglu G, et al. Energy and Buildings,2019,188,111.
59 Yang Y, Wu W, Fu S, et al. Construction and Building Materials,2020,246,118479.
60 Yang J, Zhang G Q, Liu G J, et al. Journal of Textile Engineering,2019,40(10),127(in Chinese).
杨建,张国庆,刘国金,等.纺织学报,2019,40(10),127.
61 Rezaie A B, Montazer M. Journal of Applied Polymer Science,2019,136(3),46951.
[1] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[2] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[3] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[4] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[5] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[6] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[7] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[8] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[9] 吴丽梅, 刘庆欣, 王晓龙, 唐宁, 高丽丽, 胡玲. 相变储能材料研究进展[J]. 材料导报, 2021, 35(Z1): 501-506.
[10] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[11] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[12] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[13] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[14] 武海鹏. 复合材料层合板阻尼性能的预测与分析[J]. 材料导报, 2021, 35(Z1): 617-620.
[15] 李磊, 刘晓莲, 王利媛, 康卫民, 庄旭品. 无机相拓扑结构对有机-无机复合质子交换膜性能的影响综述[J]. 材料导报, 2021, 35(Z1): 621-627.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed