Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5075-5088    https://doi.org/10.11896/cldb.19100037
  无机非金属及其复合材料 |
二维材料MXenes在传感领域的应用研究进展
任书芳1, 冯润妍2, 程寿年2, 曾俊菱1, 宫雪1, 王庆涛2
1 甘肃政法大学司法鉴定中心,甘肃省证据科学技术研究与应用重点实验室,兰州 730070
2 西北师范大学化学化工学院,兰州 730070
Recent Progress of Two-dimensional MXenes in the Field of Sensing
REN Shufang1, FENG Runyan2, CHENG Shounian2, ZENG Junling1, GONG Xue1, WANG Qingtao2
1 Key Laboratory of Evidence Science Research and Application of Gansu Province, Judicial Expertise Center, Gansu University of Political Science and Law, Lanzhou 730070, China
2 College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 12086KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二维(2D)材料MXenes独特的结构、组成和物理化学特性,使其成为继石墨烯之后2D材料研究领域又一种“明星”材料。MXenes的应用范围从机械、光学、电子、储能等领域扩展到生物医学、环境保护等。这主要是由于其具有大比表面积、高导电性、丰富的表面功能基团、良好的生物相容性,以及可利用各种聚合物或纳米颗粒进行表面功能化,使其有望应用于精准的生物传感、有毒气体和液体污染物传感监测平台。
目前,MXenes材料在传感领域的研究主要集中于电流型生物传感、生物/气体电阻传感和压电传感等。在生物电化学传感中,MXenes材料主要用作蛋白质、生物酶、生物发光材料等的固定化基质,以利用其大比表面积、高导电性的特性,提高电子传质效率和速率,从而达到提高传感灵敏度、降低检测限的目的;生物/气体电阻传感是基于MXenes材料对外来吸附分子(生物分子或气体分子)造成的电导率扰动的灵敏性反映,而MXenes材料对外来生物分子或气体分子的吸附是基于其丰富的功能基团(主要为-OH、-F、-O、-Cl等)与这些分子之间的相互作用;压电传感方面的研究主要集中于便携式或可穿戴式压电传感器,MXenes受应力作用,其层间距发生变化,导致其电导率发生变化而产生电信号。可见,在传感器的应用中,人们利用的是MXenes材料的大比表面积和导电性以及表面功能基团。但是,MXenes材料的导电性受表面功能基团的影响,这些基团在一定程度上会降低MXenes的导电性,甚至某些基团使其变为半导体,这不利于传感器高导电性的要求。事实上,功能基团和高电导率是一对矛盾体,研究工作需要在两者之间寻找最佳平衡点。另外,不同的功能基团对不同元素类型的MXenes材料的导电性影响也存在差别。因此,研究者在研究利用进一步的功能化修饰电极(例如修饰贵金属纳米粒子、碳纳米管等)来克服电导率的问题的同时,也在积极寻求更适合传感的不同元素类型的MXenes材料。
本文简要概述了MXenes材料的制备、结构、性能研究进展,重点综述了为生物医学、环境保护应用而设计的MXenes传感器的构建及其最新研究进展,包括电流型生物传感、可穿戴式生物传感、MXenes还原电化学传感、生物电阻传感、气体电阻传感、压电/应变传感等。本文还讨论了MXenes材料在传感领域应用面临的困难和挑战。希望本文能在MXenes传感器的开发及应用中为研究者提供有益的指导和帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任书芳
冯润妍
程寿年
曾俊菱
宫雪
王庆涛
关键词:  MXenes  2D材料  电化学传感  电流型传感  电阻传感  生物相容性    
Abstract: The unique structure, composition and physicochemical properties of the two-dimensional (2D) MXenes nanomaterials have made it another “star material” in the field of two-dimensional materials research besides graphene in the past decade. MXenes is currently expanding its applications from mechanical, optical, electronic, and energy storage to biomedical and environmental protection. This is mainly due to its large specific surface area, abundant termination groups, biocompatibility properties, and easy surface functionalization using various polymers or nanoparticles, making it ideal for precise biosensing and bioimaging, nano platform for monitoring toxic gases and liquid contaminants.
At present, MXenes materials research in the field of sensors mainly focuses on current bioelectrochemical sensing, bio/gas resistance sensing and piezoresistive sensing. For example, MXenes materials are used as immobilized matrix for proteins, biological enzymes, and bioluminescent materials in bioelectrochemical sensing. The immobilized matrix is used to improve the transferring efficiency and rate of electron mass by utilizing its large specific surface area and high conductivity, so as to improve the sensing sensitivity and reduce the detection limit. Bio/gas resistance sensing is based on the sensitivity of MXenes materials to the conductivity of externally adsorbed molecules (biomolecules or gas molecules), while the adsorption of foreign biomolecules or gas molecules is based on the interaction of the termination functional group of MXenes and the molecules. The research on piezoresistive sensing is mainly focused on portable or a wearable piezoresistive sensor. MXenes is subjected to stress and its layer spacing changes, resulting in changes in its electrical conductivity and electrical signals. It can be seen that in the application of sensors, the large specific surface area and conductivity of the MXenes material and the surface termination functional group are important. However, the conductivity of MXenes depends on the surface termination group. The existence of functional groups will to some extent reduce the conductivity of MXenes, and even some groups make it into a semiconductor, which is not conducive to the high conductivity of the sensor. Therefore, the exist of termination group and the high conductivity are a pair of contradictions, and the research work needs to find a balance between the two. In addition, different functional groups also have different effects on the conductivity of MXenes materials of different element types. Therefore, researchers are actively seeking MXenes materials of different element types that are more suitable for sensing while studying the use of further functionalized modified electrodes (such as modifying precious metal nanoparticles, carbon nanotubes, etc.) to overcome the problem of electrical conductivity.
This paper briefly summarizes the research progress in the preparation, structure and properties of MXenes materials, and focuses on the construction of MXenes sensors designed for biomedical and environmental protection applications and their latest research progress, including current-type biosensing, wearable biosensing, MXenes reduction electrochemical sensing, bioelectrical resistance sensing, gas resistance sensing, strain/resistive sensing. The article also discusses the difficulties and challenges of MXenes in the application of sensing. We hope this article can provide useful guidance for researchers in the development and application of MXenes sensors.
Key words:  MXenes    2D nanomaterials    electrochemical sensing    current sensing    resistance sensing    biocompatibility
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TB34  
基金资助: 国家自然科学基金(21865032);甘肃省自然科学基金(20JR5RA173);甘肃省高等学校创新基金项目(2020A-088);甘肃政法大学司法鉴定中心科研项目(jdzxzd2018-02)
通讯作者:  wangqt@nwnu.edu.cn   
作者简介:  任书芳(1980-),女,博士,甘肃政法大学证据科学技术研究与应用重点实验室副研究员。2005年毕业于河北农业大学化学专业,获理学学士学位,2010年毕业于中国科学院兰州化学物理研究所物理化学专业,获理学博士学位。2010年留所从事科研工作,2017年调入甘肃政法大学证据科学技术研究与应用重点实验室从事科研工作。目前主要研究方向为分子印迹电化学传感器,毒品、毒物物证检测及溯源等。
王庆涛(1982-),男,博士,西北师范大学化学化工学院副教授。2005年毕业于山东大学化学工程与工艺专业,获工学学士学位,2010年毕业于中国科学院兰州化学物理研究所物理化学专业,获理学博士学位,同年进入西北师范大学化学化工学院从事教学、科研工作。目前主要研究方向为能源存储与转换材料等。
引用本文:    
任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
REN Shufang, FENG Runyan, CHENG Shounian, ZENG Junling, GONG Xue, WANG Qingtao. Recent Progress of Two-dimensional MXenes in the Field of Sensing. Materials Reports, 2021, 35(5): 5075-5088.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100037  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5075
1 Novoselov K S, Geim A K, Morozov S V, et al. Science,2004,306,666.
2 Butler S Z, Hollen S M, Cao L, et al. ACS Nano,2013,7,2898.
3 Bhimanapati G R, Lin Z, Meunier V, et al. ACS Nano,2015,9,11509.
4 Zhang H. ACS Nano,2015,9,9451.
5 Tan C L, Cao X H, Wu X J, et al. Chemical Reviews,2017,117,6225.
6 Ding X L, Liu H F, Fan Y B. Advanced Healthcare Materials,2015,4,1451.
7 Karahan H E, Wiraja C, Xu C, et al. Advanced Healthcare Materials,2018,7,1870050.
8 Lin Y, Williams T V, Connell J W. Journal of Physical Chemistry Letters,2010,1,277.
9 Weng Q H, Wang X B, Wang X, et al. Chemical Society Reviews,2016,45,3989.
10 Zhi C Y, Bando Y, Tang C C, et al. Advanced Materials,2009,21,2889.
11 Chhowalla M, Shin H S, Eda G, et al. Nature Chemistry,2013,5,263.
12 Lv R, Robinson J A, Schaak R E, et al. Accounts of Chemical Research,2015,48,56.
13 Choi J R, Yong K W, Choi J Y, et al. Theranostics,2018,8,1005.
14 Ares P, Palacios J J, Abellán G, et al. Advanced Materials,2018,30,1703771.
15 Li X, Shan J Y, Zhang W Z, et al. Small,2017,13,160660.
16 Chen Y, Wang L Z, Shi J L. Nano Today,2016,11,292.
17 Hargittai M. Chemical Reviews,2000,100,2233.
18 Dou L, Wong A B, Yu Y, et al. Science,2015,349,1518.
19 Hendricks S B. Nature,1938,142,38.
20 Naguib M, Mochalin V N, Barsoum M W, et al. Advanced Materials,2014,26,992.
21 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials,2011,23,4248.
22 Huang K, Li Z, Lin J, et al. Chemical Society Reviews,2018,47,5109.
23 Alhabeb M, Maleski K, Anasori B, et al. Chemistry of Materials,2017,29,7633.
24 Anasori B, Lukatskaya M R, Gogotsi Y. Nature Reviews Materials,2017,2,16098.
25 Khazaei M, Arai M, Sasaki T, et al. Advanced Functional Materials,2013,23,2185.
26 Shi C Y, Beidaghi M, Naguib M, et al. Physical Review Letters,2014,112,125501.
27 Harris K J, Bugnet M, Naguib M, et al. The Journal of Physical Chemistry C,2015,119,13713.
28 Hope M A, Forse A C, Griffith K J, et al. Physical Chemistry Chemical Physics,2016,18,5099.
29 Kajiyama S, Szabova L, Iinuma H, et al. Advanced Energy Materials,2017,7,1601873.
30 Wang H, Wu Y, Yuan X Z, et al. Advanced Materials,2018,30,1704561.
31 Naguib M, Mashtalir O, Carle J, et al. ACS Nano,2012,6,1322.
32 Okubo M, Sugahara A, Kajiyama S, et al. Accounts of Chemical Research,2018,51,591.
33 Anasori B, Xie Y, Beidaghi M, et al. ACS Nano,2015,9,9507.
34 Soleymaniha M, Shahbazi M A, Rafieerad A R, et al. Advanced Healthcare Materials,DOI:10.1002/adhm.201801137.
35 Xu B Z, Zhu M S, Zhang W C, et al. Advanced Materials,2016,28,3333.
36 Seh Z W, Fredrickson K D, Anasori B, et al. ACS Energy Letters,2016,1,589.
37 Ren C E, Hatzell K B, Alhabeb M, et al. Journal of Physical Chemistry Letters,2015,6,4026.
38 Shahzad F, Alhabeb M, Hatter C B, et al. Science,2016,353,1137.
39 Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Nature,2014,516,78.
40 Tang Q, Zhou Z, Shen P W. Journal of the American Chemical Society,2012,134,16909.
41 Dillon A D, Ghidiu M J, Krick A L, et al. Advanced Functional Mate-rials,2016,26,4162.
42 Yu X H, Cai X K, Cui H D, et al. Nanoscale,2017,9,17859.
43 Dai C, Lin H, Xu G, et al. Chemistry of Materials,2017,29,8637.
44 Lin H, Gao S S, Dai C, et al. Journal of the American Chemical Society,2017,139,16235.
45 Lin H, Wang X G, Yu L D, et al. Nano Letters,2017,17,384.
46 Lin H, Wang Y W, Gao S S, et al. Advanced Materials,2018,30,201703284.
47 Dai C, Chen Y, Jing X X, et al. ACS Nano,2017,11,12696.
48 Rasool K, Helal M, Ali A, et al. ACS Nano,2016,10,3674.
49 Alimohammadi F, Sharifian G M, Attanayake N H, et al. Langmuir,2018,34,7192.
50 Wu L X, Lu X B, Dhanjai, et al. Biosensors & Bioelectronics,2018,107,69.
51 Lorencova L, Bertok T, Dosekova E, et al. Electrochimica Acta,2017,235,471.
52 Kim S J, Koh H-J, Ren C E, et al. ACS Nano,2018,12,986.
53 Zhang Y Z, Lee K H, Anjum D H, et al. Science Advances,2018,4,eaat0098.
54 Li Z L, Zhang H, Han J, et al. Advanced Materials,2018,30(25),1706981.
55 Veronesi F, Giavaresi G, Fini M, et al. Materials Science and Enginee-ring C,2017,70,264.
56 Lee E, Mohammadi A V, Prorok B C, et al. ACS Applied Materials & Interfaces,2017,9,37184.
57 Qu L L, Wang S P, Yang X W, et al. Journal of Chromatography A,2019,1584,24.
58 Zhu J, Ha E, Zhao G L, et al. Coordination Chemistry Reviews,2017,352,306.
59 Huang K, Li Z J, Lin J, et al. Chemical Society Reviews,2018,47,5109.
60 Liu G Y, Zou J H, Tang Q Y, et al. ACS Applied Materials & Interfaces,2017,9,40077.
61 Lipatov A, Alhabeb M, Lukatskaya M R, et al. Advanced Electronic Materials,2016,2,1600255.
62 Li Z, Cui Y R, Wu Z W, et al. Nature Catalysis,2018,1,349.
63 Sun Z M. International Materials Reviews,2011,56,143.
64 Zhou Y C, Sun Z M. Journal of Physics-Condensed Matter,2000,12,L457.
65 Eklund P, Rosen J, Persson P O Å. Journal of Physics D: Applied Phy-sics,2017,50,113001.
66 Fei X M, Neilson J, Li Y B, et al. Nano Letters,2017,17,2887.
67 Naguib M, Halim J, Lu J, et al. Journal of the American Chemical Society,2013,135,15966.
68 Meshkian R, Naslund L A, Halim J, et al. Scripta Materialia,2015,108,147.
69 Zhou J, Zha X, Chen F Y, et al. Angewandte Chemie International Edition,2016,55,5008.
70 Karlsson L H, Birch J, Halim J, et al. Nano Letters,2015,15,4955.
71 Sang X H, Xie Y, Lin M W, et al. ACS Nano,2016,10,9193.
72 Halim J, Lukatskaya M R, Cook K M, et al. Chemistry of Materials,2014,26,2374.
73 Jhon Y I, Koo J, Anasori B, et al. Advanced Materials,2017,29,1702496.
74 Urbankowski P, Anasori B, Makaryan T, et al. Nanoscale,2016,8(22),11385.
75 Li T F, Yao L L, Liu Q L, et al. Angewandte Chemie International Edition,2018,57,6115.
76 Xie X, Xue Y, Li L, et al. Nanoscale,2014,6(19),11035.
77 Urbankowski P, Anasori B, Hantanasirisakul K, et al. Nanoscale,2017,9(45),17722.
78 Alhabeb M, Maleski K, Mathis T S, et al. Angewandte Chemie International Edition,2018,57,5444.
79 Hu T, Hu M M, Li Z J, et al. Physical Chemistry Chemical Physics,2016,18,20256.
80 Zheng W, Yang L, Zhang P G, et al. Materials Reports A: Review Papers,2018,32(8),2513(in Chinese).
郑伟,杨莉,张培根,等.材料导报:综述篇,2018,32(8),2513.
81 Naguib M, Gogotsi Y. Accounts of Chemical Research,2015,48,128.
82 Lukatskaya M R, Mashtalir O, Ren C E, et al. Science,2013,341(6153),1502.
83 Osti N C, Naguib M, Ostadhossein A, et al. ACS Applied Materials & Interfaces,2016,8,8859.
84 Mashtalir O, Naguib M, Mochalin V N, et al. Nature Communications,2013,4,1716.
85 Mashtalir O, Lukatskaya M R, Kolesnikov A I, et al. Nanoscale,2016,8,9128.
86 Li Z Y, Wang L B, Sun D D, et al. Materials Science and Engineering: B,2015,191,33.
87 Naguib M, Unocic R R, Armstrong B L, et al. Dalton Transactions,2015,44(20),9353
88 Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Advanced Materials,2015,27,3501.
89 Wang H B, Zhang J F, Wu Y P, et al. Applied Surface Science,2016,384,287.
90 Ling Z, Ren C E, Zhao M Q, et al. Proceedings of the National Academy of Sciences,2014,111,16676.
91 Vaughn A, Ball J, Heil T, et al. Chemistry-A European Journal,2017,23,8128.
92 Peng Q M, Guo J X, Zhang Q R, et al. Journal of the American Chemical Society,2014,136,4113.
93 Luo J M, Tao X Y, Zhang J, et al. ACS Nano,2016,10,2491.
94 Li G N, Tan L, Zhang Y M, et al Langmuir,2017,33,9000.
95 Zhang T, Pan L M, Tang H, et al. Journal of Alloys and Compounds,2017,695,818.
96 Halim J, Kota S, Lukatskaya M R, et al. Advanced Functional Materials,2016,26,3118.
97 Barsoum M W, Radovic M. Annual Review of Materials Research,2011,41,195.
98 Sun Z M, Music D, Ahuja R, et al. Physical Review B,2004,70,092102.
99 Novoselov K S, Jiang D, Schedin F, et al. Proceedings of the National Academy of Sciences of the United States of America,2005,102,10451.
100 Anasori B, Shi C, Moon E J, et al. Nanoscale Horizons,2016,1,227.
101 Wang X F, Shen X, Gao Y R, et al. Journal of the American Chemical Society,2015,137,2715.
102 Zhang X, Li P, Wang Z D, et al. The Chinese Journal of Process Engineering,2019,19(1),35(in Chinese).
张洵,李培,王政德,等.过程工程学报,2019,19(1),35.
103 Xie Y, Naguib M, Mochalin V N, et al. Journal of the American Chemical Society,2014,136,6385.
104 Lai S, Jeon J, Jang S K, et al. Nanoscale,2015,7,19390.
105 Dall’Agnese Y, Lukatskaya M R, Cook K M, et al. Electrochemistry Communications,2014,48,118.
106 Enyashin A N, Ivanovskii A L. Journal of Solid State Chemistry,2013,207,42.
107 Ling C Y, Shi L, Ouyang Y X, et al. Advanced Science,2016,3,1600180.
108 Zhang W Q, Cheng C, Fang P L, et al. Physical Chemistry Chemical Physics,2016,18,4376.
109 Eames C, Islam M S. Journal of the American Chemical Society,2014,136,16270.
110 Enyashin A N, Ivanovskii A L. The Journal of Physical Chemistry C,2013,117,13637.
111 Zhu J J, Schwingenschlögl U. 2D Materials,2017,4,025073.
112 Shein I R, Ivanovskii A L. Computational Materials Science,2012,65,104.
113 He Y, Wang L B, Wang X L, et al. Journal of Synthetic Crystals,2019,48(5),787(in Chinese).
何艳,王李波,王晓龙,等.人工晶体学报,2019,48(5),787.
114 Wang K, Zhou Y F, Xu W T, et al. Ceramics International,2016,42,8419.
115 Li J X, Dun Y L, Huo C X, et al. Ceramics International,2015,41(2),2631.
116 Naguib M, Mashtalir O, Lukatskaya M R, et al. Chemical Communications,2014,50,7420.
117 Ashton M, Mathew K, Hennig R G, et al. The Journal of Physical Chemistry C,2016,120,3550.
118 Je M, Lee Y, Chung Y C. Thin Solid Films,2016,619,131.
119 Mashtalir O, Cook K M, Mochalin V N, et al. Journal of Materials Che-mistry A,2014,2(35),14334.
120 Ying Y L, Liu Y, Wang X Y, et al. ACS Applied Materials & Interfaces,2015,7,1795.
121 Lira E, Wendt S, Huo P, et al. Journal of the American Chemical Society,2011,133,6529.
122 Kurtoglu M, Naguib M, Gogotsi Y, et al. MRS Communications,2012,2,133.
123 Ran J, Gao G, Li F T, et al. Nature Communications,2017,8,13907.
124 Hart J L, Hantanasirisakul K, Lang A C, et al. Nature Communications,2019,10,522.
125 Halim J, Kota S, Lukatskaya M R, et al. Advanced Functional Mate-rials,2016,26,3118.
126 Halim J, Moon E J, Eklund P, et al. Physical Review B,2018,98(10),104202.
127 Muckley E S, Naguib M, Wang H W, et al. ACS Nano,2017,11,11118.
128 Kim H, Anasori B, Gogotsi Y, et al. Chemistry of Materials,2017,29,6472.
129 Ghidiu M, Kota S, Halim J, et al. Chemistry of Materials,2017,29,1099.
130 Naguib M, Come J, Dyatkin B, et al. Electrochemistry Communications,2012,16,61.
131 Yu X F, Li Y C, Cheng J B, et al. ACS Applied Materials & Interfaces,2015,7,13707.
132 Liu J, Jiang X T, Zhang R Y, et al. Advanced Functional Materials,2019,29,1807326.
133 Rakhi R B, Nayak P, Xia C, et al. Scientific Reports,2016,6,36422.
134 Wang F, Yang C H, Duan C Y, et al. Journal of the Electrochemical Society,2015,162,B16.
135 Wang F, Yang C H, Duan M, et al. Biosensors & Bioelectronics,2015,74,1022.
136 Zheng J S, Diao J L, Jin Y Z, et al. Journal of the Electrochemical So-ciety,2018,165,B227.
137 Liu H, Duan C Y, Yang C H, et al. Sensors and Actuators B-Chemical,2015,218,60.
138 Zhou L Y, Zhang X, Ma L, et al. Biochemical Engineering Journal,2017,128,243.
139 Lei Y J, Zhao W L, Zhang Y Z, et al. Small,2019,15,1901190.
140 Zhu X L, Liu B C, Hou H J, et al. Electrochimica Acta,2017,248,46.
141 Rasheed P A, Pandey R P, Rasool K, et al. Sensors and Actuators B-Chemical,2018,265,652.
142 Lorencova L, Bertok T, Filip J, et al. Sensors and Actuators B-Chemical,2018,263,360.
143 Zheng J S, Wang B, Ding A L, et al. Journal of Electroanalytical Che-mistry,2018,816,189.
144 Fang Y F, Yang X C, Chen T, et al. Sensors and Actuators B-Chemical,2018,263,400.
145 Jiang Y J, Zhang X N, Pei L J, et al. Chemical Engineering Journal,2018,339,547.
146 Sarkar D, Liu W, Xie X, et al. ACS Nano,2014,8,3992.
147 Lee E, Mohammadi A V, Prorok B C, et al. ACS Applied Materials & Interfaces,2017,9,37184.
148 Xiao B, Li Y C, Yu X F, et al. Sensors and Actuators B-Chemical,2016,235,103.
149 Ma S H, Yuan D Y, Jiao Z Y, et al. Journal of Physical Chemistry C,2017,121,24077.
150 Ma Y N, Liu N S, Li L Y, et al. Nature Communications,2017,8,1207
151 Yang Y N, Shi L J, Cao Z R, et al. Advanced Functional Materials,2019,29,1807882.
[1] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[2] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[3] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[4] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[5] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[6] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[7] 曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
[8] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[9] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[10] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[11] 洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化[J]. 材料导报, 2018, 32(18): 3239-3243.
[12] 姜涛, 王瑞彬, 霍枫. 用于体外循环装置的材料涂层技术综述与展望[J]. 《材料导报》期刊社, 2018, 32(13): 2304-2310.
[13] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[14] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[15] 李娜, 李曦, 褚梅, 程丹, 周键, 陈奇, 李玉刚, 董玉林. DNA电化学传感器对金属离子检测的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 115-120.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed