Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9075-9085    https://doi.org/10.11896/cldb.19040038
  无机非金属及其复合材料 |
碳基及氧化锌量子点在癌症诊疗应用中的研究进展
朱俊名, 董梁, 秦溱, 李振楠, 袁青梅
云南大学材料科学与工程学院,昆明 650504
Research Progress of Carbon-based and Zinc Oxide Quantum Dots in Cancer Diagnosis and Treatment
ZHU Junming, DONG Liang, QIN Zhen, LI Zhennan, YUAN Qingmei
College of Materials Science and Engineering, Yunnan University, Kunming 650504, China
下载:  全 文 ( PDF ) ( 7515KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 癌症是一种动态和异质性疾病,具有高死亡率和高发病率。化学疗法被认为是目前治疗癌症最有效的手段之一,常规化学疗法本身具有靶向非选择性、高毒性、化疗药物易被快速清除、药物失活、肿瘤的多药耐药性以及在非特异性位点积累等缺点。药物递送技术和纳米技术的进步为旧药物提供了新的治疗方式,可以改善药代动力学,增强其在实体瘤中的积聚并减小这些重要治疗剂的毒副作用。
癌症纳米技术是癌症诊断和治疗的新兴领域。尽管目标药物递送系统向特定的部位递送抗癌剂已经取得了相当大的进展,但是研究者们仍在开发和探索新的纳米材料,以获得更高的药物递送效率。
癌症治疗至关重要的是抗癌药物载体对药物的高效靶向递送。随着药物递送技术和纳米技术的进步,发展了许多高效的药物递送系统,提供了同时治疗和诊断(诊疗)的多功能平台。近年来,量子点由于其独特的光学和物理化学性质,被越来越多地用于细胞靶向、成像和药物递送。
本文讨论了生物相容性良好的石墨烯量子点、碳量子点、氧化锌量子点作为抗癌药物载体应用的最新研究进展,以及这些量子点在细胞毒性、荧光成像、智能递送和协同治疗等多功能部分的应用和作为治疗用药物载体在实际应用中的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱俊名
董梁
秦溱
李振楠
袁青梅
关键词:  量子点  生物相容性  生物成像  协同治疗  药物递送系统    
Abstract: Cancer is a dynamic and heterogeneous disease with high mortality and high morbidity. In the treatment of cancer, chemotherapy is consi-dered to be one of the most effective means. While conventional chemotherapy has some defects such as multidrug resistance, highly toxic, rapid elimination of chemotherapy drugs by metabolism, drug inactivation, and it may accumulate at non-specific sites to cause damage to normal cells and tissues. Advances in drug delivery technology and nanotechnology have allowed new formulations of drugs to improve pharmacokinetics, enhance accumulation in solid tumors, and reduce the significant toxic side effects of these important therapeutic agents.
Intracellular drug delivery to tumor cells and cell imaging is critical for the clinical treatment of malignant tumors. Therefore, there is a need for effective drug delivery and cell imaging systems. Cancer nanotechnology is an emerging field of cancer diagnosis and treatment. Although significant progress has been made in delivering targeted anti-cancer agents to specific sites of interest, new nanomaterials are often developed and explored to achieve higher drug delivery efficiencies.
Efficient targeted delivery of drugs is critical for cancer treatment. With advances in drug delivery technology and nanotechnology, many efficient drug delivery systems have been developed with nanotechnology, providing a versatile platform for simultaneous therapeutic and diagnostic (diagnostic) functions. In recent years, quantum dots have become more and more widely used for cell targeting, imaging, and drug delivery due to their unique optical and physicochemical properties.
This review discusses the recent advances in the use of biocompatible graphene quantum dots, carbon quantum dots, and zinc oxide quantum dots as carriers for anticancer drugs. And the cytotoxicity, fluorescence imaging, smart delivery, and synergistic treatment of these quantum dots in the application of multifunctional parts is summarized. At last, we list the challenges of practical application as a therapeutic drug carrier.
Key words:  quantum dots    biocompatibility    biological imaging    synergistic treatment    drug delivery system
                    发布日期:  2020-04-27
ZTFLH:  TB34  
基金资助: 国家自然科学基金(21502166);云南大学第十届科研创新项目(2018211)
通讯作者:  qmyuan@ynu.edu.cn   
作者简介:  朱俊名,2013年6月毕业于东北石油大学并取得工学学士学位。同年9月进入云南大学材料科学与工程学院材料加工工程专业攻读硕士学位,主要从事石墨烯量子点在癌症诊疗应用方面的研究。
袁青梅,云南大学材料科学与工程学院副教授,硕士研究生导师。2001年7月毕业于云南大学有机化学专业,取得硕士学位,2012年7月取得云南大学有机化学博士学位。2016年6月—2017年7月,在美国宾夕法尼亚州立大学生物化学与分子生物学系作访问学者。主持国家自然科学基金1项,云南省自然科学基金2项。主要从事药物载体的设计合成及在癌症等疾病诊疗中的应用。
引用本文:    
朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
ZHU Junming, DONG Liang, QIN Zhen, LI Zhennan, YUAN Qingmei. Research Progress of Carbon-based and Zinc Oxide Quantum Dots in Cancer Diagnosis and Treatment. Materials Reports, 2020, 34(9): 9075-9085.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040038  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9075
1 Pati R, Sahu R, Panda J, et al. Scientific Reports,2016,6,24184.
2 Baguley B C. Molecular Biotechnology,2010,46(3),308.
3 Apetoh L, Ghiringhelli F, Tesniere A, et al. Nature Medicine,2007,13(9),1050.
4 Thakur M, Mewada A, Pandey S, et al. Materials Science & Engineering C,2016,67,468.
5 Lu Z R, Qiao P. Molecular Pharmaceutics,DOI:10.1021/acs.molpharmaceut.8b00037.
6 Gui W, Zhang J, Chen X, et al. Microchimica Acta,2018,185(1),66.
7 Nigam J P, Agawane S, Athalye M C, et al. Materials Science & Engineering C,2017,78,1203.
8 Choi S Y, Baek S H, Chang S J, et al. Biosensors & Bioelectronics,2016,93,267.
9 Bilan R, Fleury F, Nabiev I, et al. Bioconjug Chem,2015,26(4),609.
10 Lim S Y, Shen W, Gao Z. Chemical Society Reviews,2015,44(1),362.
11 Zong J, Zhu Y, Yang X. Chemical Communications,2010,47(2),764.
12 Chua C K, Sofer Z, Simek P, et al. ACS Nano,2015,9(3),2548.
13 Wang Y, Hu A. Journal of Materials Chemistry C,2014,2(34),6921.
14 Khodadadei F, Safarian S, Ghanbari N. Materials Science & Engineering C,2017,79,280.
15 Tian Z, Yao X, Ma K, et al. ACS Omega,2017,2(3),1249.
16 Su X, Chan C, Shi J, et al. Biosensors & Bioelectronics,2016,92,489.
17 Shen J, Zhu Y, Yang X, et al. Chemical Communications,2012,43(29),3686.
18 Xu X, Ray R, Gu Y, et al. Journal of the American Chemical Society,2015,126(40),12736.
19 Shang L, Nienhaus K, Nienhaus G U J, et al. Nanobiotechnol,2014,12,5.
20 Gottesman M M, Fojo T, Bates S E. Nature Reviews Cancer,2002,2(1),48.
21 Szakács G, Paterson J K, Ludwig J A, et al. Nature Reviews Drug Disco-very,2006,5(3),219.
22 Rubbiabrandt L, Audard V, Sartoretti P, et al. Annals of Oncology,2004,15(3),460.
23 Akhavan O, Ghaderi E, Akhavan A, et al. Biomaterials,2012,33,8017.
24 Dong J, Wang K, Sun L, et al. Sensors & Actuators B Chemical,2017,256,616.
25 Javanbakht S, Namazi H. Materials Science & Engineering C,2018,87,50.
26 Shu Y, Wang J H, Lu J, et al. Carbon,2017,114,324.
27 Ding H, Zhang F, Zhao C, et al. ACS Applied Materials & Interfaces,2017,9(33),27396.
28 Yang D Z, Yao X Y, Dong J J, et al. Bioconjugate Chemistry,2018,29,2776.
29 Qiu L, Zhao Y, Li B, et al. Sensors & Actuators B Chemical,2017,240,1066.
30 Sarkar N, Sahoo G, Das R, et al. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences,2017,109,359.
31 Zhang J, Wu D, Li M, et al. ACS Applied Materials & Interfaces,2015,7(48),26666.
32 Liu X, Shou D, Chen C, et al. Materials Science & Engineering C,2017,81,206.
33 Qiu J, Zhang R, Li J, et al. International Journal of Nanomedicine,2015,10,6709.
34 Justin R, Tao K, Román S, et al. Carbon,2016,97,54.
35 Xu H, He J, Zhang Y, et al. Carbohydrate Polymers,2015,121(121),132.
36 Qiu L, Zhang W, Wang S, et al. Materials Science & Engineering C Materials for Biological Applications,2017,81,485.
37 Zhang X, Zhao Y, Cao L,et al. Sensors and Actuators B,2018,257,105.
38 Cai X, Luo Y, Zhang W, et al. ACS Applied Materials & Interfaces,2016,8(34),22442.
39 Bayda S, Hadla M, Palazzolo S, et al. Journal of Controlled Release,2017,248,144.
40 Chiu S H, Gedda G, Girma W M, et al. Acta Biomaterialia,2016,46,151.
41 Semyachkina-Glushkovskaya O V, Sokolovski S G, Goltsov A, et al. Progress in Quantum Electronics,2017,55,112.
42 Wang J, Tan X, Pang X, et al. ACS Applied Materials & Interfaces,2016,8(37),24331.
43 Zhang M, Wang J, Wang W, et al. Chemical Engineering Journal,2017,330,442.
44 Ardekani S M, Dehghani A, Hassan M, et al. Chemical Engineering Journal,2017,330,651.
45 Chen M L, Pang S C, Chen X M, et al. Talanta,2017,175,280.
46 Kumawat M K, Thakur M, Gurung R B, et al. Scientific Reports,2017,7(1),15858.
47 Zhao H, Ding R, Zhao X, et al. Drug Discovery Today,2017,22(9),1302.
48 Yao X, Niu X, Ma K, et al. Small,2017,13(2),1602225.
49 Su Y L, Yu T W, Chiang W H, et al. Advanced Functional Materials,2017,27(23),1700056.
50 Huang X, Wu S, Du X. Carbon,2016,101,135.
51 Xiang Y, Liu X, Mao C, et al. Materials Science & Engineering C-Materials for Biological Applications,2018,85,214.
52 Zhang X, Wang Y, Zhao Y, et al. Materials Science & Engineering C,2017,77,19.
53 Zhang M, Wang W, Cui Y, et al. ACS Biomaterials Science & Enginee-ring,2017,3,108.
54 Zhang M, Wang W, Zhou N, et al. Carbon,2017,118,752.
55 Pandey S, Gedda G R, Thakur M, et al. Journal of Industrial & Engineering Chemistry,2017,56,62.
56 Park Y H, Park S Y, In I. Journal of Industrial & Engineering Chemistry,2015,30,190.
57 Alibolandi M, Abnous K, Sadeghi F, et al. International Journal of Pharmaceutics,2016,500(1-2),162.
58 Chowdhury A D, Ganganboina A B, Tsai Y C, et al. Analytica Chimica Acta,2018,1027,109.
59 Nasrollahi F, Koh Y, Chen P, et al. Materials Science & Engineering: C,2019,94,247.
60 Javanbakht S, Shaabani A. International Journal of Biological Macromolecules,2019,123,389.
61 Javanbakht S, Nazari N, Rakhshaei R, et al. Carbohydrate Polymers,2018,195,453.
62 Javanbakht S, Namazi H. Materials Science and Engineering: C,2018,87,50.
63 Gao Y, Zhong S, Xu L F, et al. Microporous and Mesoporous Materials,2019,278,130.
64 Sung S Y, Su Y L, Cheng W, et al. Nano Letters,2019,19,69.
65 Alavi A S, Meshkini A. European Journal of Pharmaceutical Sciences,2018,115,144.
[1] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[2] 杨磊, 杨志, 连锋. 碳量子点作为生物相容性发光材料在再生医学方面的应用[J]. 材料导报, 2019, 33(Z2): 1-9.
[3] 曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
[4] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[5] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[6] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[7] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[8] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[9] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[10] 冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[11] 陈其苗, 宋禹忻, 张振普, 刘娟娟, 芦鹏飞, 李耀耀, 王庶民, 龚谦. 通过晶格失配调节有盖层张应变Ge量子点的光电特性[J]. 材料导报, 2018, 32(6): 1004-1009.
[12] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[13] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[14] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[15] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed