Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 1004-1009    https://doi.org/10.11896/j.issn.1005-023X.2018.06.028
  计算模拟 |
通过晶格失配调节有盖层张应变Ge量子点的光电特性
陈其苗1, 2, 宋禹忻1, 张振普1, 刘娟娟1, 芦鹏飞3, 李耀耀1, 王庶民1, 4, 龚谦1
1 中国科学院上海微系统与信息技术研究所,信息功能材料国家重点实验室,上海 200050;
2 中国科学院大学,北京 100049;
3 北京邮电大学信息光子学与光通信研究院,信息光子学与光通信国家重点实验室,北京 100089;
4 查尔姆斯理工大学,微技术和纳米科学系,瑞典哥德堡
Tuning the Optoelectronic Properties of Capped Tensile-strained Ge Quantum Dots by Lattice Mismatch
CHEN Qimiao1, 2, SONG Yuxin1, ZHANG Zhenpu1, LIU Juanjuan1, LU Pengfei3, LI Yaoyao1, WANG Shumin1, 4, GONG Qian1
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai 200050;
2 University of Chinese Academy of Sciences, Beijing 100049;
3 State Key Laboratory of Information Photonics and Optical Communications of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100089;
4 Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
下载:  全 文 ( PDF ) ( 1567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用Ge与不同衬底形成的不同晶格失配度来调节有盖层的张应变Ge量子点的光电特性。通过有限元方法模拟并获得张应变Ge量子点内的应变分布, 而后通过形变势理论和有效质量近似计算得到量子点的电子结构。与无盖层张应变Ge量子点相比,有盖层Ge量子点能保持更大的应变量。另外,随着量子点尺寸和晶格失配度的增大,导带Γ谷与导带L谷的能量差缩减,最终使Ge转变为直接带隙材料。直接带隙能量随着量子点尺寸的增大而减小。该研究结果表明张应变Ge量子点是制备包含激光器在内的Si基光源的理想材料,在未来光电子应用中有巨大潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈其苗
宋禹忻
张振普
刘娟娟
芦鹏飞
李耀耀
王庶民
龚谦
关键词:  张应变Ge  量子点  有限元  有效质量法  直接带隙    
Abstract: The optoelectronic properties of capped tensile-strained Ge quantum dot (QD) was studied with different lattice mismatch, which was formed by Ge and various substrate. The strain distribution of Ge QDs were simulated with the aid of finite element method (FEM) and the electronic structures of capped tensile-strained Ge QDs under such strain was calculated via deformation potential theory and effective mass approach (EMA). The size effect of Ge QDs was also considered. It was found that the capped QDs hold larger strain than the uncapped ones. In addition, the energy difference between Γ and L conduction valley reduced with the increase of the QD size and the lattice mismatch, thus converting the Ge QDs into the direct band gap material. The energy of the direct band gap decreased with the increase of the QDs’ size. This work shows that the tensile-strained Ge QD is a promising light emission material for future optoelectronic applications such as lasers on Si.
Key words:  tensile-strained Ge    quantum dot    finite element method    effective mass approach    direct band gap
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  O472  
基金资助: 国家自然科学基金(61404153); 上海浦江人才计划(14PJ1410600); 国家自然科学基金重点项目(61334004); 国家重点基础研究发展规划(973计划)(2014CB643902); 中国科学院战略性先导专项(XDA5-1); 中国科学院重点项目(KGZD-EW-804); 国家自然科学基金创新研究组项目(61321492); 中国科学院高迁移率材料工程国际合作与创新项目; 信息功能材料重点实验室开放项目
通讯作者:  宋禹忻,男,1981年生,博士,助理研究员,研究方向为半导体光电材料与器件 E-mail:songyuxin@mail.sim.ac.cn   
作者简介:  陈其苗:男,1990年生,博士研究生,研究方向为半导体光电材料与器件 E-mail:chenqm007@gmail.com
引用本文:    
陈其苗, 宋禹忻, 张振普, 刘娟娟, 芦鹏飞, 李耀耀, 王庶民, 龚谦. 通过晶格失配调节有盖层张应变Ge量子点的光电特性[J]. 材料导报, 2018, 32(6): 1004-1009.
CHEN Qimiao, SONG Yuxin, ZHANG Zhenpu, LIU Juanjuan, LU Pengfei, LI Yaoyao, WANG Shumin, GONG Qian. Tuning the Optoelectronic Properties of Capped Tensile-strained Ge Quantum Dots by Lattice Mismatch. Materials Reports, 2018, 32(6): 1004-1009.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.028  或          https://www.mater-rep.com/CN/Y2018/V32/I6/1004
1 Saraswat K,Chui C,Krishnamohan T, et al. High performance germanium MOSFETs[J].Materials Science and Engineering:B,2006,135(3):242.
2 Jain S C, Decoutere S, Willander M, et al. SiGe HBT for application in BiCMOS technology: Ⅱ. Design, technology and performance[J].Semiconductor Science and Technology,2001,16(7):R67.
3 Michel J, Liu J,Kimerling L C. High-performance Ge-on-Si photodetectors[J].Nature Photonics,2010,4(8):527.
4 Boucaud P, El Kurdi M, Ghrib A, et al. Recent advances in germanium emission[J].Photonics Research,2013,1(3):102.
5 Liu J, Sun X, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature[J].Optics Letters,2010,35(5):679.
6 Posthuma N E, van der Heide J, Flamand G,et al. Emitter formation and contact realization by diffusion for germanium photovoltaic devices[J].IEEE Transactions on Electron Devices,2007,54(5):1210.
7 Fischetti M V, Laux S E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys[J].Journal of Applied Physics,1996,80(4):2234.
8 Bai Y, Lee K E, Cheng C, et al. Growth of highly tensile-strained Ge on relaxed InxGa1-x As by metal-organic chemical vapor deposition[J].Journal of Applied Physics,2008,104(8):84518.
9 Ishikawa Y, Wada K,Cannon D D, et al. Strain-induced band gap shrinkage in Ge grown on Si substrate[J].Applied Physics Letters,2003,82(13):2044.
10 Jakomin R, de Kersauson M, El Kurdi M, et al. High quality tensile-strained n-doped germanium thin films grown on InGaAs buffer layers by metal-organic chemical vapor deposition[J].Applied Phy-sics Letters,2011,98(9):091901.
11 Huo Y,Lin H,Chen R, et al. Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy[J].Applied Physics Letters,2011,98(1):96.
12 de Kersauson M, Prost M, Ghrib A, et al. Effect of increasing thickness on tensile-strained germanium grown on InGaAs buffer layers[J].Journal of Applied Physics,2013,113(18):183508.
13 Fang Y Y,Tolle J,Roucka R, et al. Perfectly tetragonal, tensile-strained Ge on Ge1-ySny buffered Si(100)[J].Applied Physics Letters,2007,90(6):10.
14 Nam D, Sukhdeo D,Cheng S L, et al. Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser[J].Applied Physics Letters,2012,100(13):1.
15 Nam D, Sukhdeo D, Roy A, et al. Strained germanium thin film membrane on silicon substrate for optoelectronics[J].Optics Express 19(27):25866.
16 Boztug C, Sanchez-Perez J R,Sudradjat F F,et al. Tensilely strained germanium nanomembranes as infrared optical gain media[J].Small,2013,9(4):622.
17 Lim P H, Park S, Ishikawa Y, et al. Enhanced direct bandgap emission in germanium by micromechanical strain engineering[J].Optics Express,2009,17(18):16358.
18 El Kurdi M, Bertin H,Martincic E,et al. Control of direct band gap emission of bulk germanium by mechanical tensile strain[J].Applied Physics Letters,2010,96(4):2012.
19 Sanchez-Perez J R, Boztug C,Chen F,et al. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes[J].Procee-dings of the National Academy of Sciences,2011,108(47):18893.
20 Chen Q,Song Y, Wang K, et al. A new route toward light emission from Ge: Tensile-strained quantum dots[J].Nanoscale,2015,7:8725.
[1] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[2] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[3] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[4] 陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
[5] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[6] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[7] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[8] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[9] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[10] 潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
[11] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[12] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[13] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[14] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[15] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed