Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22080228-6    https://doi.org/10.11896/cldb.22080228
  金属与金属基复合材料 |
基于金属橡胶的轻质波纹型夹层结构静态力学性能
潘伶1,2, 许冰冰1,2, 任志英1,2,*, 史林炜1,2, 陈毅鹏1,2
1 福州大学机械工程及自动化学院,福州 350116
2 福州大学金属橡胶与振动噪声研究所,福州 350116
Static Mechanical Properties of Lightweight Corrugated Sandwich Structure Based on Metal Rubber
PAN Ling1,2, XU Bingbing1,2, REN Zhiying1,2,*, SHI Linwei1,2, CHEN Yipeng1,2
1 School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
2 Institute of Metal Rubber and Vibration and Noise, Fuzhou University, Fuzhou 350116, China
下载:  全 文 ( PDF ) ( 18345KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用金属橡胶制备一种波纹夹芯板,通过试验和有限元分别研究结构的宏观及微观力学特性,为加快计算速率,构建有限元等效模型研究不同材料参数对结构力学性能的影响,并进行试验验证。结果表明,金属橡胶波纹夹芯板受载条件下会存在两个阶段:平台阶段与致密阶段,相较于传统波纹夹芯板,其平台阶段加长且吸能效果提高。结合试验和有限元发现导致这两个阶段的原因是,结构在受载条件下会存在极限载荷致使夹芯层屈曲变形从而使结构内部空隙减少,结构进一步受载达到致密阶段。通过两者的对比验证了研究结果的有效性,为金属橡胶波纹夹层板的未来设计和应用提供了指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘伶
许冰冰
任志英
史林炜
陈毅鹏
关键词:  金属橡胶  波纹夹芯板  力学特性  有限元    
Abstract: A corrugated sandwich plate was prepared by metal rubber, and the macro and micro mechanical properties of the structure were studied by experiment and finite element respectively. In order to accelerate the calculation rate, the finite element equivalent model was established, and the influence of different material parameters on the mechanical properties of the structure was studied and verified by experiment. The results show that there are two stages under load: platform stage and compact stage. Compared with traditional corrugated sandwich board, the platform stage is longer and the energy absorption effect is improved. Combined with the test and the finite element, it is found that the reason for these two stages is that the ultimate load can cause the buckling deformation of the sandwich layer under the loading condition, thus reducing the internal voidage of the structure, and the structure is further loaded to the dense stage. The validity of the research results is verified by the comparison of the two, which provides guidance for the future design and application of metal rubber corrugated sandwich plate.
Key words:  metal rubber    corrugated sandwich panel    mechanical property    finite element
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TB333  
基金资助: 国家自然科学基金(U2330202; 52175162; 51805086; 51975123)
通讯作者:  *任志英,福州大学机械工程及自动化学院教授、博士研究生导师,福州大学金属橡胶与振动噪声研究所常务副所长,福建省高层次B类人才。2003年福州大学机械制造及自动化专业本科毕业,2006年福州大学机械电子工程专业硕士毕业,2015年6月于福州大学获得博士学位。2006年至今加入福州大学机械学院车辆工程系,长期从事高端装备减振降噪技术研究,近五年主持国家自然科学基金、军科委创新特区、装备部预研项目以及各类省部级项目10余项。在AFM、Friction、Wear、MSSP、Composite Structures、《机械工程学报》等权威期刊作为第一或者通信作者发表SCI、EI等收录的学术论文近60篇;授权国家专利60多项,其中发明专利22项和软件著作4项。出版英文专著1章节,参编团标1项。renzyrose@126.com   
作者简介:  潘伶,福州大学机械工程及自动化学院教授、硕士研究生导师。1993年于福州大学获硕士学位;2015年于福州大学获博士学位。现为中国机械工程学会高级会员、福州大学摩擦学研究所所长和福州市摩擦与润滑行业技术创新中心主任。目前主要从事微纳摩擦材料研究、机械设备的流场模拟、有限元分析和结构优化等工作。发表论文40余篇,包括《机械工程学报》、Wear、Surface Topography、Nanomaterials、Fluid Phase Equilibria等。
引用本文:    
潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
PAN Ling, XU Bingbing, REN Zhiying, SHI Linwei, CHEN Yipeng. Static Mechanical Properties of Lightweight Corrugated Sandwich Structure Based on Metal Rubber. Materials Reports, 2024, 38(4): 22080228-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080228  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22080228
1 Yue C F, Wu S D. Torpedo Technology, 2007(4), 1(in Chinese).
岳灿甫, 吴始栋. 鱼雷技术, 2007(4), 1.
2 Zhou X Q. Unified Theory of plane sandwich plate and bending perfor-mance analysis of circular sandwich plate. Master’s Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
周雪清. 平面夹芯板统一理论及圆弧夹芯板抗弯性能分析. 硕士学位论文, 哈尔滨工业大学, 2015.
3 Rejab M, Cantwell W J. Composites Part B: Engineering, 2013, 47, 267.
4 Hou S J, Shu C F, Zhao S Y, et al. Composite Structures, 2015, 126, 371.
5 Zheng J L, Sun Y, Peng M J. Journal of Composite Materials, 2016, 33(2), 408(in Chinese).
郑吉良, 孙勇, 彭明军. 复合材料学报, 2016, 33(2), 408.
6 Hu K, Lin K J, Gu D D, et al. Materials Science and Engineering: A, 2019, 762, 138089.
7 Li Z J, Huang L, Zhao N, et al. Chinese Ship Research, 2020, 15(4), 53(in Chinese).
李政杰, 黄路, 赵南, 等. 中国舰船研究, 2020, 15(4), 53.
8 Qiang B, Liu Y J, Kan Q H. Journal of Materials Engineering, 2014(11), 97(in Chinese).
强斌, 刘宇杰, 阚前华. 材料工程, 2014(11), 97.
9 Shi S S, Chen B Z, Chen H R, et al. Journal of Composite Materials, 2017, 34(9), 1953(in Chinese).
石姗姗, 陈秉智, 陈浩然, 等. 复合材料学报, 2017, 34(9), 1953.
10 Meng L, Lan X Q, Zhao J, et al. Composite Structures, 2021, 263(1), 113724.
11 Zhao Z Y, Liu C, Sun L S, et al. Composite Structures, 2021, 277, 114604.
12 Song X D, Wang D, Jing C H. Hot Working Technology, 2022(10), 56(in Chinese).
宋绪丁, 王冬, 荆传贺. 热加工工艺, 2022(10), 56.
13 Xia Y W, Li X P, Yu P, et al. Materials, 2018, 11(9), 1714.
14 Li Y G, Zhang Y, Zhu L et al. Journal of Ship Mechanics, 2021, 25(5), 637(in Chinese).
李应刚, 张雨, 朱凌, 等. 船舶力学, 2021, 25(5), 637.
15 Chen J M, Zhu T, Xiao S N, et al. Journal of Mechanical Science and Technology, 2023, 42(3), 345(in Chinese).
陈佳明, 朱涛, 肖守讷, 等. 机械科学与技术, 2023, 42(3), 345.
16 Cheng S L, Wu L J, Sun S, et al. Journal of Composite Materials, 2022, 39(7), 3641(in Chinese).
程树良, 吴灵杰, 孙帅, 等. 复合材料学报, 2022, 39(7), 3641.
17 Cao Z L, Zhu H, Dong M J, et al. Journal of Composite Materials, 2023, 40(2), 1190(in Chinese).
曹忠亮, 朱昊, 董明军, 等. 复合材料学报, 2023, 40(2), 1190.
18 Chen P. Ship Science and Technology, 2016, 38(9), 24(in Chinese).
陈攀. 船舰科学技术, 2016, 38(9), 24.
19 Yao C, Hu Z F, Mo F, et al. Metals, 2019, 9(5), 582.
20 Roudbeneh F H, Liaghat G, Sabouri H, et al. Iranian Polymer Journal, 2020, 29(8), 707.
21 Cui A, Liu F F, Zhang H, et al. Automotive Engineering, 2019, 41(10), 1221(in Chinese).
崔岸, 刘芳芳, 张晗, 等. 汽车工程, 2019, 41(10), 1221.
22 Zhang D Y, Xia Y, Zhang Q C, et al. Journal of Aerospace Power, 2018, 33(6), 1432(in Chinese).
张大义, 夏颖, 张启成, 等. 航空动力学报, 2018, 33(6), 1432.
23 Wang Y J, Zhang Z J, Xue X M, et al. Thin-Walled Structures, 2020, 154, 106816.
24 Wang S S, Xue X, Bai H B, et al. Ordnance Materials Science and Engineering, 2020, 43(3), 114(in Chinese).
王珊珊, 薛新, 白鸿柏, 等. 兵器材料科学与工程, 2020, 43(3), 114.
25 Zheng X Y, Ren Z Y, Shen L L, et al. Materials, 2021, 14(1), 187.
26 Ren Z Y, Shen L L, Huang Z W, et al. IEEE Access, 2019, 7, 132694.
27 Ren Z Y, Shen L L, Bai H B, et al. Mechanical Systems and Signal Processing, 2021, 154, 107567.
[1] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[2] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[3] 陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
[4] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[5] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[6] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[7] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[8] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[9] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[10] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[11] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[12] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[13] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[14] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[15] 陈栋梁, 雷子萱, 徐力, 陈双, 刘育红, 强军锋. 热熔酚醛树脂/玻璃纤维层压板的固化特性及工艺优化[J]. 材料导报, 2024, 38(16): 23050095-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed