Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 22100262-5    https://doi.org/10.11896/cldb.22100262
  金属与金属基复合材料 |
基于XFEM的汽车铝合金断裂行为表征
张彪*, 刘家招, 杨鑫三, 孙宇萱
广西大学机械工程学院,南宁 530004
Fracture Behavior Characterization of Automotive Aluminum Alloy Based on XFEM
ZHANG Biao*, LIU Jiazhao, YANG Xinsan, SUN Yuxuan
School of Mechanical Engineering, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 11197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 车用铝薄壁合金5052H32和6061T6以其优异的成形性被广泛用于轻量化车身的冲压钣金件和结构件中。为建立反映材料实际力学特性的表征模型,针对其非线性本构响应中的弹塑性变形、损伤演化及韧性断裂不同发展阶段,分别开发出J-C弹塑性模型、损伤控制模型,以及与应力集中状态相关的J-C失效模型、GTN细观损伤模型和MMC断裂模型,并以参数反演、遗传算法寻优等手段标定了各模型的有效参量,形成力学演变全过程表征。利用上述模型结合扩展有限元法精确模拟了薄壁试件拉伸断裂的过程,通过与实验一致的内部裂纹动态生长行为、应变场和断口形貌,验证了所提取本构性能参数的准确性,且采用经验MMC准则的预测精度最高,形变误差仅为4.7%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张彪
刘家招
杨鑫三
孙宇萱
关键词:  车用铝合金  力学表征  损伤  断裂模型  扩展有限元    
Abstract: Automotive thin-wall aluminum alloys 5052H32 and 6061T6 are widely used in the stamping sheet metal parts and structural parts of lightweight car bodies due to their excellent formability. To establish behavior characterization models reflecting the actual mechanical properties of materials, aiming at different development stages of elastoplastic deformation, damage evolution and ductile fracture in their nonlinear constitutive responses, J-C elastoplastic model, damage control model and J-C failure model, GTN meso damage model, MMC fracture model related to stress concentration state were developed respectively. The effective parameters of each model were calibrated by means of parameter inversion and genetic algorithm optimization to form the whole process characterization of mechanical evolution. Using the above models combined with extended finite element method, the tensile fracture process of thin-wall specimens was accurately simulated. The accuracy of the extracted constitutive property parameters was verified through the dynamic growth behavior of internal crack, strain field and fracture morphology consistent with the experiments. And the fracture prediction accuracy using the empirical MMC criterion reached the highest, with a deformation error of only 4.7%.
Key words:  automotive aluminum alloy    mechanical characterization    damage    facture model    extended finite element
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  U463.326  
基金资助: 广西科技基地和人才专项(桂科AD22035912);广西制造系统与先进制造技术重点实验室课题(22-035-4S016)
通讯作者:  *张彪,通信作者,博士,广西大学机械工程学院助理教授、讲师、硕士研究生导师。研究方向为汽车轻量化材料连接、智能农业机械关键技术。已发表论文10余篇,其中SCI检索5篇。bzhang@gxu.edu.cn   
引用本文:    
张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
ZHANG Biao, LIU Jiazhao, YANG Xinsan, SUN Yuxuan. Fracture Behavior Characterization of Automotive Aluminum Alloy Based on XFEM. Materials Reports, 2024, 38(19): 22100262-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100262  或          http://www.mater-rep.com/CN/Y2024/V38/I19/22100262
1 Luo G, Wu Z, Changhai B, et al. Materials Reports, 2024, 38(18), 23030082(in Chinese).
罗广瑞, 吴子彬, 长海博文, 等. 材料导报, 2024, 38(18), 23030082.
2 Wang B, Lei B B, Zhu J X, et al. Materials & Design, 2015, 87, 593.
3 Sato Y S, Sugiura Y, Shoji Y, et al. Materials Science and Engineering:A, 2004, 369(1-2), 138.
4 Zhang X, Liu C, Zheng Y, et al. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(5), 1558(in Chinese).
张学广, 刘纯国, 郑愿, 等. 吉林大学学报(工学版), 2016, 46(5), 1558.
5 Zhang T W, Wang Y, Li W, et al. Iron and Steel, Vanadium and Titanium, 2021, 42(6), 207(in Chinese).
张天文, 王莹, 李伟, 等. 钢铁钒钛, 2021, 42(6), 207.
6 Dong P. Microstructure and properties of friction stir welded joint of 6005A-T6 aluminum alloy. Ph.D. Thesis, Jilin University, China, 2014.
董鹏. 6005A-T6 铝合金搅拌摩擦焊接头的组织与性能研究. 博士学位论文, 吉林大学, 2014.
7 Susanne T, Asle J T, Tore B, et al. Engineering Fracture Mechanics, 2022, 269, 108418.
8 Zhou P, Zhu R Y, Shi C, et al. Journal of Plasticity Engineering, 2020, 27(12), 207(in Chinese).
周芃, 朱荣宇, 石婵, 等. 塑性工程学报, 2020, 27(12), 207.
9 Gao Y L, Sun X H. Explosions and Shock Waves, 2021, 41(3), 118(in Chinese).
高玉龙, 孙晓红. 爆炸与冲击, 2021, 41(3), 118.
10 Borst R. Computational methods for fracture in porous media, Elsevier, Netherlands, 2018, pp.69.
11 Tucker M T, Horstemeyer M F, Whittington W R, et al. Mechanics of Materials, 2010, 42(10), 895.
12 Xiao J, Hu Y M, Jin X Q, et al. Journal of Mechanical Strength, 2018, 40(5), 1189(in Chinese).
肖晋, 胡玉梅, 金晓清, 等. 机械强度, 2018, 40(5), 1189.
13 Yang Z. Study on plastic fracture behavior of high strength steel based on gurson model. Ph.D. Thesis, Tianjin University, China, 2012.
杨祯. 基于Gurson模型的高强钢塑性断裂行为研究. 博士学位论文, 天津大学, 2012.
14 Valiveti D M. Dissertations & Theses-Gradworks, 2009, 9(1), 25.
[1] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[2] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[3] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[4] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[5] 王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
[6] 赵晓燕, 王冬颖, 程从前, 曹铁山, 刘宝军, 姚景文, 赵杰. 利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性[J]. 材料导报, 2024, 38(3): 22050337-5.
[7] 毕钰, 秦拥军, 阳毅恒, 陈奇, 杨亮. 金属波纹管浆锚连接预制钢筋混凝土剪力墙声发射性能研究[J]. 材料导报, 2024, 38(24): 23100230-9.
[8] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[9] 卢慧扬, 林金保, 刘惠民, 王炳权, 李一豪, 陈巽. 镁合金轧制边裂损伤模型的研究进展[J]. 材料导报, 2024, 38(24): 23110051-8.
[10] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[11] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[12] 肖民, 吴娟, 奚健杨, 李方贤, 祝雯, 韦江雄. 基于Mazars损伤模型评价不同粗糙度机制砂砂浆的抗裂性能[J]. 材料导报, 2024, 38(21): 23060117-6.
[13] 陈学锋, 云广琨, 吴特伟, 闫力辉, 颜川奇. 温拌沥青胶结料与混合料粘结性能研究[J]. 材料导报, 2024, 38(20): 23040041-7.
[14] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[15] 徐东, 金天, 王朋波, 程战. Gd改性Ni-Cr钎料钎焊金刚石组织和性能研究[J]. 材料导报, 2024, 38(19): 23070245-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed