Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22070065-8    https://doi.org/10.11896/cldb.22070065
  金属与金属基复合材料 |
基于金属磁记忆的弯曲工字钢梁的力-磁效应
苏三庆1,2,*, 邓瑞泽1,2, 王威1,2, 易术春3, 左付亮1,2, 刘馨为1,2, 李俊廷1,2
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学结构工程与抗震教育部重点实验室,西安 710055
3 陕西省建筑科学研究院有限公司,西安 710082
Force-Magnetic Effect of Bending Steel I-beam Based on Metal Magnetic Memory
SU Sanqing1,2,*, DENG Ruize1,2, WANG Wei1,2, YI Shuchun3, ZUO Fuliang1,2, LIU Xinwei1,2, LI Junting1,2
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 Key Laboratory of Structural Engineering and Earthquake Resistance, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
3 Shaanxi Architecture Science Research Institute Co., Ltd., Xi’an 710082, China
下载:  全 文 ( PDF ) ( 19680KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,基于金属磁记忆检测技术的受力状态表征及损伤评估应用广泛,但在受弯构件的检测中,弯曲长度及荷载作用位置对检测结果的影响尚不明确。为研究受弯构件的力-磁效应,本工作基于四点弯曲工字钢梁的磁记忆检测,采用考虑初始平面外弯曲和应力与磁化作用角度的力-磁耦合方法,通过COMSOL多物理场仿真软件进行了数值模拟研究,并结合有效场理论分析了钢梁弯曲长度对磁信号的影响,提出了表征损伤及荷载作用位置的磁特征参数。结果表明:检测线磁信号峰-峰值S在钢梁接近屈服状态时显著增大,并在钢梁处于承载能力极限状态时达到最大值;腹板检测线磁信号峰-峰值Sw在钢梁屈服和达到最大承载能力时分别随有效段长度的增加呈线性减小和以二次函数的规律减小,而下翼缘检测线磁信号峰-峰值Sf在钢梁屈服和达到最大承载能力时均随有效段长度的增加以二次函数的规律减小;根据磁特征参数SwSf定义了磁损伤指数D和荷载作用系数Sr,当钢梁所受外加荷载超过其最大承载能力的80%时,可根据D>0.5的特征对钢梁不安全的受力状态进行预警;荷载作用系数Sr与钢梁的剪跨比λ近似线性相关,可以表征荷载的作用位置。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏三庆
邓瑞泽
王威
易术春
左付亮
刘馨为
李俊廷
关键词:  工字钢梁  金属磁记忆  有限元分析  损伤表征  力-磁耦合    
Abstract: At present, the characterization of stress states and the assessment of damage based on the metal magnetic memory inspection method is widely applied, but the influence of the specimen size and the loading position on the inspection of flexural members is still unclear. In order to study the force-magnetic effect of flexural members, the numerical simulation was carried out by COMSOL multiphysics software, based on the magnetic memory inspection of the four-point bending steel I-beam. It was taken into consideration the initial defect and the angle between applied stress with magnetization. The influence of the effective length of the specimen on the magnetic signal was analyzed, combined with the effective field theory. It was proposed the magnetic characteristic parameters represent the damage and the loading position. The results show that the peak-to-peak value S of the magnetic signal increases significantly when the steel beam approaches the yielding state, and reaches the maximum when the steel beam reaches the maximum bearing capacity. When the beam yields and reaches the maximum bearing capacity, the peak-to-peak value Sw of the inspection line on the web decreases linearly and quadratically with the increase of the effective length, respectively. The peak-to-peak value Sf of the inspection line on the bottom flange decreases quadratically with the increase of the effective length of the beam when it yields or reaches the maximum bearing capacity. According to the magnetic characteristic parameters, It is defined the magnetic damage index D and the loading factor Sr. When the applied load on the steel beam exceeds 80% of its maximum bearing capacity, the unsafe stress state of the steel beam can be warned according to the D greater than 0.5. The loading factor Sr is approximately linearly related to the shear-span ratio λ of the steel beam, which can characterize the loading position.
Key words:  steel I-beam    metal magnetic memory    finite element analysis    damage characterization    force-magnetic coupling
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TG115.28  
基金资助: 国家自然科学基金(52378314;52278214);陕西省自然科学基础研究计划重点项目(2022JZ-21);中铁第一勘察设计院集团有限公司科研开发项目(院科20-58)
通讯作者:  *苏三庆,西安建筑科技大学教授、博士研究生导师,长期从事钢筋混凝土结构、工程结构抗震及其防灾减灾、结构安全诊断与加固等方面的科研与教学工作。主持或参与国家基金项目5项、省部级项目10余项;获省部级科技奖6项、国家授权专利50余项,出版著作8部,发表学术论文100余篇,其中30余篇被SCI、EI收录。sussqx@xauat.edu.cn   
引用本文:    
苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
SU Sanqing, DENG Ruize, WANG Wei, YI Shuchun, ZUO Fuliang, LIU Xinwei, LI Junting. Force-Magnetic Effect of Bending Steel I-beam Based on Metal Magnetic Memory. Materials Reports, 2024, 38(4): 22070065-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070065  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22070065
1 Zhang Z, Tong G S. Journal of Building Structures, 2021, 42(11), 51 (in Chinese).
张哲, 童根树. 建筑结构学报, 2021, 42(11), 51.
2 Cheng H G, Hu J J, Hu C. Journal of Railway Engineering Society, 2021, 38(11), 67 (in Chinese).
程海根, 胡钧剑, 胡晨. 铁道工程学报, 2021, 38(11), 67.
3 Masurkar F, Tse P. Ultrasonics, 2020, 108, 106036.
4 Li Y J, Wang Z F, Wang J, et al. Chinese Journal of Lasers, 2021, 48(16), 170 (in Chinese).
李亦佳, 王正方, 王静, 等. 中国激光, 2021, 48(16), 170.
5 Xu B S, Dong L H. Metal magnetic memory testing method in remanufacturing quality control, National Defense Industry Press, China, 2015 (in Chinese).
徐滨士, 董丽虹. 再制造质量控制中的金属磁记忆检测技术, 国防工业出版社, 2015.
6 Lu B B, Wang H D, Dong L H, et al. Materials Reports, 2021, 35(7), 7139 (in Chinese).
卢兵兵, 王海斗, 董丽虹, 等. 材料导报, 2021, 35(7), 7139.
7 Li C C, Dong L H, Wang H D, et al. Materials Reports, 2015, 29(11), 107 (in Chinese).
李冲冲, 董丽虹, 王海斗, 等. 材料导报, 2015, 29(11), 107.
8 Shi P P, Su S Q, Chen Z M. Journal of Nondestructive Evaluation, 2020, 39(2), 43.
9 Shui G S, Li C W, Yao K. International Journal of Applied Electromagnetics and Mechanics, 2015, 47(4), 1023.
10 Dong L H, Xu B S, Dong S Y, et al. NDT & E International, 2009, 42(4), 323.
11 Leng J C, Tian H X, Guo Y G, et al. Chinese Journal of Engineering, 2018, 40(5), 565 (in Chinese).
冷建成, 田洪旭, 郭亚光, 等. 工程科学学报, 2018, 40(5), 565.
12 Bao S, Liu X, Zhang D. Strain, 2015, 51(5), 370.
13 Huang H H, Yang C, Qian Z C, et al. Journal of Magnetism and Magnetic Materials, 2016, 416, 213.
14 Deng J Q, Xing H Y, Li J Y, et al. Journal of Materials Science and Engineering, 2019, 37(2), 277 (in Chinese).
邓加强, 邢鸿雁, 李建宇, 等. 材料科学与工程学报, 2019, 37(2), 277.
15 Chen H L, Wang C L, Zuo X Z. NDT & E International, 2017, 92, 82.
16 Yi S C, Wang W, Su S Q. International Journal of Applied Electromagnetics and Mechanics, 2015, 49(4), 547.
17 Su S Q, Yi S C, Wang W, et al. Insight, 2018, 60(7), 380.
18 Zhou J T, Zhang S H, Zhang H. China Civil Engineering Journal, 2021, 54(11), 1 (in Chinese).
周建庭, 张森华, 张洪. 土木工程学报, 2021, 54(11), 1.
19 Qiu J L, Zhou J T, Zhao S Y, et al. Engineering Structures, 2020, 209, 110168.
20 中国国家标准化管理委员会. GB/T 706-2016 热轧型钢, 中国标准出版社, 2016.
21 Shi P P. Quantitative study of micro-magnetic nondestructive testing for stress and defect in ferromagnetic materials. Ph. D. Thesis, Xidian University, China, 2017 (in Chinese).
时朋朋. 铁磁材料应力和缺陷的微磁检测定量化研究. 博士学位论文, 西安电子科技大学, 2017.
22 Ma X P, Su S Q, Wang W, et al. International Journal of Applied Electromagnetics and Mechanics, 2019, 60(2), 223.
23 Su S Q, Yi S C, Wang W, et al. International Journal of Applied Electromagnetics and Mechanics, 2017, 55(3), 409.
24 Jiles D C, Devine M K. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 1881.
25 Jiles D C, Li L. Journal of Applied Physics, 2004, 95(11), 7058.
26 Schneider C S, Richardson J M. Journal of Applied Physics, 1982, 53(11), 8136.
27 Su S Q, Wei L X, Wang W, et al. International Journal of Applied Electromagnetics and Mechanics, 2020, 62(3), 501.
[1] 陈守东, 陈敬琪, 李杰, 孙建, 卢日环. 复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟[J]. 材料导报, 2023, 37(2): 21050240-10.
[2] 陈守东, 卢日环, 孙建, 李杰. 异步冷轧少晶铜薄带局部变形的CP-FE模拟[J]. 材料导报, 2023, 37(14): 21120214-10.
[3] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[4] 张洪, 蒋合靖, 夏润川, 王瑰玫, 黎娅, 周建庭. 基于金属磁记忆的持荷钢绞线腐蚀检测试验研究[J]. 材料导报, 2022, 36(13): 21040232-8.
[5] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[6] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[7] 卢兵兵, 王海斗, 董丽虹, 赵云才, 王慧鹏. 金属磁记忆疲劳损伤检测的应用现状及发展前景[J]. 材料导报, 2021, 35(7): 7139-7144.
[8] 余坤, 文立伟, 宦华松, 唐鹏刚. 缝合增强复合材料帽型加筋壁板界面拉脱性能[J]. 材料导报, 2021, 35(24): 24189-24194.
[9] 陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
[10] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[11] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[12] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[13] 任重, 黄兴元, 柳和生. 塑料微管气辅挤出成型实验与机理分析[J]. 材料导报, 2020, 34(20): 20193-20198.
[14] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[15] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed