Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4351-4356    https://doi.org/10.11896/j.issn.1005-023X.2018.24.026
  高分子与聚合物基复合材料 |
氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备
阮世超1, 罗丹丹2, 郝亚2, 白雪2, 陈岑2
1 温州医科大学,温州 325035;
2 浙江理工大学生命科学学院,杭州 310018
Preparation of Iridium Oxide/Polydopamine/Laminin Biomimetic Layer
RUAN Shichao1, LUO Dandan2, HAO Ya2, BAI Xue2, CHEN Cen2
1 Wenzhou Medical University, Wenzhou 325035;
2 College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018
下载:  全 文 ( PDF ) ( 2164KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 神经电极的生物相容性是制约植入式神经假体长期使用功效的核心要素,对电极表面进行修饰改性可有效提高电极活性。本研究利用射频磁控溅射和循环伏安法在钛基体表面形成氧化铱薄膜,通过多巴胺氧化自聚合修饰氧化铱薄膜,进一步在涂层表面接枝层粘连蛋白实现二次功能化,完成仿生涂层的构建。对涂层的理化性质研究表明,其机械稳定性较好,表面亲水性以及电化学性能得到显著提高,并且无细胞毒性,促细胞粘附能力较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阮世超
罗丹丹
郝亚
白雪
陈岑
关键词:  氧化铱  多巴胺  仿生涂层  生物相容性    
Abstract: The biocompatibility of electrode-tissue interface is a crucial factor that influences the long-term performances of neural prosthesis. The modification of the electrode surface can significantly improve the biocompatibility at the implant site. Iridium oxide films were formed on the surface of titanium substrate by RF magnetron sputtering and cyclic voltammetry. Modified by dopamine and laminin, the iridium oxide/polydopamine/laminin biomimetic layer was prepared. The physical and chemical characterizations of the biomimetic layer show that the electrochemical properties and hydrophilicity are significantly improved. The layer is stable, without cytotoxicity. Besides, the layer promotes cell adhesion of PC12.
Key words:  iridium oxide    dopamine    biomimetic layer    biocompatibility
                    发布日期:  2019-01-23
ZTFLH:  TB333  
基金资助: 浙江省自然科学基金(LQ16E020006);浙江省药学重中之重一级学科开放基金(201717)
通讯作者:  陈岑:通信作者,女,1985年生,博士,硕士研究生导师,研究方向为生物材料与组织工程 E-mail:chencen313@gmail.com   
作者简介:  阮世超:男,1993年生,硕士研究生,研究方向为生物材料与组织工程
引用本文:    
阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
RUAN Shichao, LUO Dandan, HAO Ya, BAI Xue, CHEN Cen. Preparation of Iridium Oxide/Polydopamine/Laminin Biomimetic Layer. Materials Reports, 2018, 32(24): 4351-4356.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.026  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4351
1 Yan X, Zhang Q Y, Lu J H, et al. Recent progress in preparation and application for iridium/oxide films[J].Chinese Journal of Rare Metals,2004,28(4):756(in Chinese).
阎鑫,张秋禹,卢锦花,等.铱金属及其氧化物薄膜的制备与应用研究进展[J].稀有金属,2004,28(4):756.
2 Lin Z C, Xie C, Osakada Y, et al. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials[J].Nature Communications,2014,5(2):163.
3 Lu Y, Wang T, Cai Z, et al. Anodically electrodeposited iridium oxide films microelectrodes for neural microstimulation and recor-ding[J].Sensors and Actuators B: Chemical,2009,137(1):334.
4 Lee I S, Whang C N, Park J C, et al. Biocompatibility and charge injection property of iridium film formed by ion beam assisted deposition[J].Biomaterials,2003,24(13):2225.
5 Du Xianlong, Liu Yongmei, Wang Jianqiang, et al. Catalytic conversion of biomass-derived levulinic acid into γ-valerolactone using iri-dium nanoparticles supported on carbon nanotubes[J].Chinese Journal of Catalysis,2013,34(5):993.
6 Serp P, Feurer R, Kalck P, et al. A new OMCVD iridium precursor for thin film deposition[J].Chemical Vapor Deposition,2001,7(2):59.
7 Endle J P, Sun Y M, Nguyen N, et al. Iridium precursor pyrolysis and oxidation reactions and direct liquid injection chemical vapor deposition of iridium films[J].Thin Solid Films,2001,388(1):126.
8 Nishio K, Tsuchiya T. Electrochromic thin films prepared by sol-gel process[J].Solar Energy Materials and Solar Cells,2001,68(3):279.
9 Li Y Q, Tan Z L, Bi J, et al. The research progress on high-tempe-rature antioxidation Ir coatings[J].Precious Metals,2012,33(4):75(in Chinese).
李艳琼,谭志龙,毕珺,等.高温抗氧化铱涂层材料的研究进展[J].贵金属,2012,33(4):75.
10 Lee I S, Park J M, Son H J, et al. Iridium oxide as a stimulating neural electrode formed by reactive magnetron sputtering[J].Key Engineering Materials,2005,288:307.
11 Yang K, Lee J S, Kim J, et al. Polydopamine-mediated surface mo-dification of scaffold materials for human neural stem cell enginee-ring[J].Biomaterials,2012,33(29):6952.
12 Cui G L, Dan N H, Dan W H, et al. Surface modification of collagen films with dopamine to promote cell adhesion and proliferation[J].Materials Review B: Research Papers,2017,31(1):20(in Chinese).
崔国廉,但年华,但卫华.多巴胺表面修饰胶原膜促进细胞粘附和增殖的研究[J].材料导报:研究篇,2017,31(1):20.
13 Lynge M E, van der Westen R, Postma A, et al. Polydopamine—A nature-inspired polymer coating for biomedical science[J].Nanoscale,2011,3(12):4916.
14 Ku S H, Ryu J, Hong S K, et al. General functionalization route for cell adhesion on non-wetting surfaces[J].Biomaterials,2010,31(9):2535.
15 Kim S, Park C B. Dopamine-induced mineralization of calcium carbonate vaterite microspheres[J].Langmuir,2010,26(18):14730.
16 Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J].Science,2007,318(5849):426.
17 Liu A, Zhao L, Bai H, et al. Polypyrrole actuator with a bioadhesive surface for accumulating bacteria from physiological media[J].ACS Applied Materials & Interfaces,2009,1(4):951.
18 Lu Y, Cai Z, Cao Y, et al. Activated iridium oxide films fabricated by asymmetric pulses for electrical neural microstimulation and recording[J].Electrochemistry Communications,2008,10(5):778.
19 Koh H S, Yong T, Chan C K, et al. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin[J].Biomaterials,2008,29(26):3574.
20 Dodla M C, Bellamkonda R V. Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps[J].Biomaterials,2008,29(1):33.
21 Uchida M, Oyane A, Kim H M, et al. Biomimetic coating of laminin-apatite composite on titanium metal and its excellent cell-adhesive properties[J].Advanced Materials,2004,37(16):1071.
[1] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[2] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[3] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[4] 李旭,汪子孺,杨莉,张振东,张友婷,杜毅帆. 稻糠基磁性高吸油材料的仿生制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 219-222.
[5] 洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化[J]. 材料导报, 2018, 32(18): 3239-3243.
[6] 姜涛, 王瑞彬, 霍枫. 用于体外循环装置的材料涂层技术综述与展望[J]. 《材料导报》期刊社, 2018, 32(13): 2304-2310.
[7] 沈佳丽, 石畅, 施冬健, 章朱迎, 陈明清. 多巴胺对骨修复材料表面改性的研究进展[J]. 《材料导报》期刊社, 2017, 31(21): 54-61.
[8] 崔国廉, 但年华, 但卫华. 多巴胺表面修饰胶原膜促进细胞粘附和增殖的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 20-24.
[9] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed