Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 25-32    https://doi.org/10.11896/j.issn.1005-023X.2017.013.004
  材料综述 |
石墨烯基材料的生物医用性能及其应用*
詹世平1,2, 闫思圻1,2, 赵启成1,2, 王卫京1,2, 李鸣明1,2
1 大连大学环境与化学工程学院,大连 116622;
2 辽宁省化工环保工程技术研究中心,大连 116622
Biomedical Properties and Applications of Graphene-based Materials
ZHAN Shiping1,2, YAN Siqi1,2 , ZHAO Qicheng1,2, WANG Weijing1,2, LI Mingming1,2
1 College of Environmental & Chemical Engineering, Dalian University, Dalian 116622;
2 Chemical and Environmental Protection Engineering Technology Research Center of Liaoning Province, Dalian 116622
下载:  全 文 ( PDF ) ( 1485KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯基材料由于具有优异的物理和化学性能,近年来获得了广泛的研究和应用。介绍了石墨烯基材料及其生物特性,讨论了石墨烯材料产生毒性的影响因素和预防措施,对石墨烯基材料在生物医用领域(如药物载体、生物传感器、光热治疗和组织工程材料)的应用情况进行了论述,并对石墨烯基材料的研究发展方向与应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
詹世平
闫思圻
赵启成
王卫京
李鸣明
关键词:  石墨烯  氧化石墨烯  生物相容性  药物载体    
Abstract: Due to their excellent physical and chemical properties, graphene-based materials have gained extensive researches and applications in recent years. The graphene-based materials and their biological properties are introduced. The effect of factors on toxicity of the graphene-based materials and prevention measures are discussed. The application of graphene-based materials in the bio-medical field, such as drug carrier, biosensor, photothermal therapy and tissue engineering materials are discussed. The further research and application of the graphene-based materials are proposed.
Key words:  graphene    graphene oxide    biocompatibility    drug carrier
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB34  
基金资助: *国家自然科学基金(21176032;21446013)
作者简介:  詹世平:女,1959年生,博士,教授,主要从事功能材料研究 E-mail:zhanshiping@dlu.edu.cn
引用本文:    
詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
ZHAN Shiping, YAN Siqi, ZHAO Qicheng, WANG Weijing, LI Mingming. Biomedical Properties and Applications of Graphene-based Materials. Materials Reports, 2017, 31(13): 25-32.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.004  或          http://www.mater-rep.com/CN/Y2017/V31/I13/25
1 Thomas R G, Moon M, Lee S, et al. Paclitaxel loaded hyaluronic acid nanoparticles for targeted cancer therapy: In vitro and in vivo analysis [J]. Int J Biol Macromol,2015,72(1):510.
2 Geim A K. Status and prospects[J]. Science,2009,324(5934):1530.
3 Akhavan O, Ghaderi E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy[J]. Small,2013,9(21):3593.
4 Akhavan O, Meidanchi A, Ghaderi E, et al. Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer[J]. J Mater Chem B, 2014,2(21):3306.
5 Qian W H, Su J S. Research status of controlled release properties of functionalized graphene oxide [J]. J Shanghai Second Polytechnic University,2016,33(2):88(in Chinese).
钱文昊, 苏俭生. 功能化氧化石墨烯载药控释性能的研究现状[J]. 上海第二工业大学学报, 2016,33(2):88.
6 Moradi S, Akhavan O, Tayyebi A, et al. Magnetite/dextran-functionalized graphene oxide nanosheets for in-vivo positive contrast magnetic resonance imaging[J]. RSC Adv,2015,59(5):47529.
7 Fazaeli Y, Akhavan O, Rahighi R, et al. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures[J]. Mater Sci Eng C,2014,45:196.
8 Akhavan O, Ghaderi E, Shirazian S A, et al. Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells[J]. Carbon,2016,97:71.
9 Akhavan O, Ghaderi E, Shirazian S A. Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors[J]. Colloids Surf B Biointerfaces,2015,126(126):313.
10 Akhavan O, Ghaderi E, Rahighi R, et al. Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels[J]. Carbon,2014,79(1):654.
11 Zhou C, Chen S H, et al. Research progress on the application of graphene in sensor [J]. Mater Rev,2014,28(S1):15(in Chinese).
周超, 陈思浩,等. 石墨烯在传感器中的应用研究进展[J]. 材料导报, 2014, 28(S1):15.
12 Hashemi E, Akhavan O, Shamsara M, et al. DNA and RNA extractions from eukaryotic and prokaryotic cells by graphene nanoplatelets[J]. RSC Adv, 2014,105(4):60720.
13 Akhavan O, Choobtashani M, Ghaderi E. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation[J]. J Phys Chem C,2012,116(17):9653.
14 Qin J, Jiang L W, Yang C M, et al. Preparation and antibacterial properties of graphene oxide nano silver composite [J]. Environmental Chem,2016,35(3):445(in Chinese).
秦静, 姜力文, 杨春苗,等. 氧化石墨烯纳米银复合材料的制备及其抗菌性[J]. 环境化学,2016,35(3):445.
15 Akhavan O, Ghaderi E. Escherichia coli, bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner[J]. Carbon, 2012, 50(5):1853.
16 Gurunathan S, Han J W, Eppakayala V, et al. Microbial reduction of graphene oxide by Escherichia coli: A green chemistry approach[J]. Colloids Surf B Biointerfaces, 2013, 102(2):772.
17 Kim H, Kim W J. Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite[J]. Small,2014,10(1):117.
18 Barinov A, Malciogˇlu O B, Fabris S, et al. Initial stages of oxidation on graphitic surfaces: Photoemission study and density functio-nal theory calculations[J]. J Phys Chem C,2009,113(21):9009.
19 Park S, An J, Jung I, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J]. Nano Lett,2009,9(4):1593.
20 Kim J, Cote L J, Kim F, et al. Graphene oxide sheets at interfaces[J]. J Am Chem Soc,2010,132(23):8180.
21 Guo F, Kim F, Han T H, et al. Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases[J]. ACS Nano, 2011, 5(10):8019.
22 Kim F, Cote L J, Huang J. Graphene oxide: Surface activity and two-dimensional assembly[J]. Adv Mater,2010,22(17):1954.
23 Bagri A, Mattevi C, Acik M, et al. Structural evolution during the reduction of chemically derived graphene oxide[J]. Nat Chem,2010,2(7):581.
24 Zhang H, Peng C, Yang J, et al. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake[J]. ACS Appl Mater Interfaces,2013,5(5):1761.
25 Zhang X, Yang R, Wang C, et al. Cell biocompatibility of functio-nalized graphene oxide[J]. Acta Phys-Chim Sin,2012,28(6):1520.
26 Sun T, Cui X, Hou Y, et al. Sduty on Functionalization and biocompatibility of graphene oxide [J]. Appl Chem Ind,2013,42(5):806(in Chinese).
孙彤,崔欣,侯雨,等. 氧化石墨烯的功能化及其生物相容性研究[J]. 应用化工,2013,42(5):806.
27 Avouris P, Dimitrakopoulos C. Graphene: Synthesis and applications[J]. Mater Today,2012,15(3):86.
28 Hu H, Yu J, Li Y, et al. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery[J]. J Biomedical Mater Res A, 2012, 100(1):141.
29 Zhao Yuan, Huang Weijiu.Research process on preparation and performance of graphene and its composite [J].J Chongqing Institute of Technology:Nat Sci,2011(7):64(in Chinese).
赵远,黄伟九.石墨烯及其复合材料的制备及性能研究进展[J].重庆理工大学学报:自然科学版,2011(7):64.
30 Yang X, Zhang X, Liu Z, et al. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide[J]. J Phys Chem C,2008,112(45):17554.
31 Kim S, Shi Y, Kim J Y, et al. Overcoming the barriers in micellar drug delivery: Loading efficiency, stability, and micelle-cell interaction[J]. Expert Opinion Drug Delivery,2010,7(1):49.
32 Sun W, Zhang N, Li A. Preparation and evaluation of N(3)-O-toluyl-fluorouracil-loaded liposomes[J]. Int J Pharmaceutics, 2008,353(1-2):243.
33 Kuila T, Bose S, Mishra A K, et al. Chemical functionalization of graphene and its applications[J]. Prog Mater Sci, 2012, 57(7):1061.
34 Sanchez V C, Jachak A, Hurt R H, et al. Biological interactions of graphene-family nanomaterials—An interdisciplinary review[J]. Chem Res Toxicology,2012,25(1):15.
35 Xie G, Cheng J, Li Y, et al. Fluorescent graphene oxide composites synthesis and its biocompatibility study[J]. J Mater Chem,2012,22(18):9308.
36 Ruiz O N, Fernando K A S, Wang B, et al. Graphene oxide: A nonspecific enhancer of cellular growth[J]. ACS Nano,2011,5(10):8100.
37 Bussy C, Aliboucetta H, Kostarelos K. Safety considerations for graphene: Lessons learnt from carbon nanotubes[J]. Accounts Chem Res,2013,46(3):692.
38 Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotechnol,2008,3(2):101.
39 Chen J T, Fu Y J, An Q F, et al. Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films[J]. Nanoscale, 2013, 5(19):9081.
40 Yue H, Wei W, Yue Z, et al. The role of the lateral dimension of graphene oxide in the regulation of cellular responses[J]. Biomate-rials,2012,33(16):4013.
41 Wang T T. Application of graphene nanocomposite materials in fluorescence confocal imaging analysis of anticancer drug delivery [D]. C hongqing:Southwestern University, 2015(in Chinese).
王婷婷. 石墨烯复合纳米材料用于抗癌药物递送的荧光共聚焦成像分析[D]. 重庆:西南大学, 2015.
42 Mao H Y, Laurent S, Chen W, et al. Graphene: Promises, facts, opportunities, and challenges in nanomedicine[J]. Chem Rev,2013,113(5):3407.
43 Kim H, Lee D, Kim J, et al. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide[J]. ACS Nano,2013,7(8):6735.
44 Zhang D, Zhou F F, Xing D. Targeted imaging and photothermal therapy of functionalized graphene oxide [J]. Sci Bull,2013,58 (7):586(in Chinese).
张达, 周非凡, 邢达. 功能化氧化石墨烯的靶向肿瘤成像与光热治疗[J]. 科学通报,2013,58(7):586.
45 Ma X, Tao H, Yang K, et al. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging[J]. Nano Res,2012,5(3):199.
46 Chowdhury I, Duch M C, Mansukhani N D, et al. Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance[J]. Environ Sci Technol,2014,48(2):961.
47 Kiew S F, Kiew L V, Lee H B, et al. Assessing biocompatibility of graphene oxide-based nanocarriers: A review[J]. J Controlled Release,2016,226:217.
48 Valle E M M D, Galán M A, Carbonell R G. Drug delivery techno-logies: The way forward in the new decade[J]. Ind Eng Chem Res,2009,48(5):2475.
49 Kakran M, Sahoo N G, Bao H, et al. Functionalized graphene oxide as nanocarrier for loading and delivery of ellagic acid[J]. Current Medicinal Chem,2011,18(29):4503.
50 Zhao X, Liu L, Li X, et al. Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin[J]. Langmuir,2014,30(34):10419.
51 Warheit D B. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats[J]. Toxicological Sci,2004,77(1):117.
52 Li N, Zhang Q, Zhang Q Q, et al. Synthesis and biocompatibility of amphiphilic graphene oxide [J]. Chem J Chinese Universities,2013,34(1):50(in Chinese).
李宁, 张琦, 张庆庆,等. 双亲性氧化石墨烯的合成及生物相容性[J]. 高等学校化学学报,2013,34(1):50.
53 Schinwald A, Murphy F A, et al. Graphene-based nanoplatelets: A new risk to the respiratory system as a consequence of their unusual aerodynamic properties[J]. ACS Nano,2012,6(1):736.
54 Zhang Y, Ali S F, Dervishi E, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells [J]. ACS Nano,2010,4(6):3181.
55 Chang Y, Yang S T, Liu J H, et al. In vitro toxicity evaluation of graphene oxide on A549 cells[J]. Toxicology Lett,2011,200(3):201.
56 Liao K H, Lin Y S, Macosko C W, et al. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts[J]. ACS Appl Mater Interfaces,2011,3(7):2607.
57 Roy S, Soin N, Bajpai R, et al. Graphene oxide for electrochemical sensing applications[J]. J Mater Chem,2011,21(38):14725.
58 Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4(7):4317.
59 Shi X, Chang H, Chen S, et al. Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states[J]. Adv Funct Mater,2012,22(4):751.
60 Hu W, Peng C, Lv M, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide[J]. ACS Nano, 2011, 5(5):3693.
61 Shan C, Yang H, Han D, et al. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine[J]. Langmuir, 2009, 25(20):12030.
62 Wojtoniszak M, Chen X, Kalenczuk R J, et al. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide[J]. Colloids Surf B Biointerfaces, 2012, 89(1):79.
63 Singh S K, Singh M K, Nayak M K, et al. Thrombus inducing property of atomically thin graphene oxide sheets[J]. ACS Nano, 2011, 5(6):4987.
64 Yang K, Zhang S, Zhang G, et al. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano Lett,2010,10(9):3318.
65 Chanankhan A, Szebeni J, Savay S, et al. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): Possible role in hypersensitivity reactions[J]. Annals Oncology, 2003, 14(9):1430.
66 Fan X, Peng W, Li Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation[J]. Adv Mater,2008,20(23):4490.
67 Gao J, Liu F, Liu Y, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid[J]. Chem Mater,2010,22(7):2213.
68 Wang G, Qian F, Saltikov C W, et al. Microbial reduction of graphene oxide by Shewanella[J]. Nano Res,2011,4(6):563.
69 Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Res,2008,1(3):203.
70 Moralesnarváez E, Merkoçi A. Graphene oxide as an optical biosen-sing platform[J]. Adv Mater,2012,24(25):3298.
71 Huang P J J, Liu J. Separation of short single- and double-stranded DNA based on their adsorption kinetics difference on graphene oxide[J]. Nanomaterials,2013,3(2):221.
72 Meng L, Yang X, Ren J, et al. Phototherapy: Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer′s disease [J]. Adv Mater,2012,24(13):1722.
73 Du D, Lin Y Y Y. Graphene-based materials for biosensing and bioimaging[J]. MRS Bull,2012,37(12):1290.
74 Bai H, Li C, Wang X, et al. A pH-sensitive graphene oxide compo-site hydrogel[J]. Chem Commun,2010,46(14):2376.
75 Liu Z, Robinson J T, Sun X, et al. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs[J]. J Am Chem Soc,2008,130(33):10876.
76 Zhou T, Zhou X, Xing D. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier[J]. Biomaterials, 2014, 35(13):4185.
77 Wen H, Dong C, Dong H, et al. Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery[J].Small,2012,8(5):760.
78 Tang Z, Wu H, Cort J R, et al. Constraint of DNA on functiona-lized graphene improves its biostability and specificity[J]. Small, 2010, 6(11):1205.
79 Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering[J]. J Controlled Release, 2013, 173(1):75.
80 Chen B, Liu M, Zhang L, et al. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector[J]. J Mater Chem,2011,21(21):7736.
81 Li J, Yang X Y. Application of novel carbon nanomaterials: Graphene and its derivatives in biosensors [J]. Prog Chem,2013,25(Z1):380(in Chinese).
李晶, 杨晓英. 新型碳纳米材料——石墨烯及其衍生物在生物传感器中的应用[J]. 化学进展, 2013,25(Z1):380.
82 Liu J, Qiao Y, Guo C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells[J]. Bioresource Technol,2012,114(3):275.
83 Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene[J]. Anal Chem,2009,81(6):2378.
84 Zhu L, Luo L, Wang Z. DNA electrochemical biosensor based on thionine-graphene nanocomposite[J]. Biosensors Bioelectron,2012,35(1):507.
85 Li J, Guo S, Zhai Y, et al. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film[J]. Anal Chim Acta,2009,649(2):196.
86 Fan J L. Research progress of graphene sensors [J]. Mater Rev:Rev,2012,26(4):31(in Chinese).
范军领. 石墨烯传感器的研究进展[J]. 材料导报:综述篇,2012,26(4):31.
87 Yang K, Feng L, Shi X, et al. Nano-graphene in biomedicine: The-ranostic applications[J]. Chem Soc Rev,2013,42(2):530.
88 Zhang W, Guo Z, Huang D, et al. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide[J]. Biomate-rials,2011,32(33):8555.
89 Yang K, Hu L, Ma X, et al. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles[J]. Adv Mater,2012,24(14):1868.
90 Hu S H, Chen Y W, Hung W T, et al. Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioi-maging and photothermal therapy monitored in situ[J]. Adv Mater,2012,24(13):1748.
91 Webber M J, Khan O F, Sydlik S A, et al. A perspective on the clinical translation of scaffolds for tissue engineering[J]. Annals Biomedical Eng,2015,43(3):641.
92 Tamayol A, Akbari M, Annabi N, et al. Fiber-based tissue engineering: Progress, challenges, and opportunities[J]. Biotechnol Adv,2013,31(5):669.
93 Cha C, Shin S R, Gao X, et al. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide[J]. Small,2014,10(3):514.
94 Lutolf M P, Hubbell J A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue enginee-ring[J]. Nat Biotechnol,2005,23(1):47.
95 Shin S R, Aghaeigharehbolagh B, Dang T T, et al. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide[J]. Adv Mater,2013,25(44):6385.
96 Kalbacova M, Broz A, Kong J, et al. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells[J]. Carbon,2010,48(15):4323.
97 Zhou K, Thouas G A, Bernard C C, et al. Method to impart electro- and biofunctionality to neural scaffolds using graphene-polyelectrolyte multilayers[J]. ACS Appl Mater Interfaces,2012,4(26):4524.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[4] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[10] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[11] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[12] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[13] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[14] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[15] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed