Please wait a minute...
材料导报  2018, Vol. 32 Issue (18): 3239-3243    https://doi.org/10.11896/j.issn.1005-023X.2018.18.025
  高分子与聚合物基复合材料 |
聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化
洪雅真1,2, 杨丁柱1,2
1 华侨大学化工学院,厦门 361021;
2 华侨大学生物材料与组织工程研究所,厦门 361021
Biocompatibility Assessment and Chondrogenic Differentiation of Poly-L-lactide-based Nanofibrous Scaffolds
HONG Yazhen1,2, YANG Dingzhu1,2
1 College of Chemical Engineering, Huaqiao University, Xiamen 361021;
2 Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021
下载:  全 文 ( PDF ) ( 4377KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚乳酸(Poly-L-lactide, PLLA)多孔纳米纤维支架为材料,并检测其生物相容性。使用小鼠成纤维母细胞(L929)为实验细胞模型,利用Alamar Blue比色法检测支架的细胞毒性;以健康系昆明小鼠为对象,使用支架浸提液进行腹腔注射,观察小鼠的急性全身毒性反应;采用抗凝新鲜兔血作为实验血液模型,考察支架浸提液对兔血的溶血程度,判断支架的毒性。对支架进行生物相容性研究,结果表明,支架的细胞毒性属合格水平,为无毒性材料,且具有良好的血液相容性。选择具有不同拓扑结构的三组支架浸提液进行细胞培养,考察含地塞米松(DEX)的成软骨诱导液对大鼠前成软骨细胞系(RJC3.1C5.18,简称C5.18)的成软骨分化情况。含地塞米松浓度为10-6mol/L的成软骨诱导液更有利于细胞的成软骨分化;随诱导时间的延长,成软骨分化程度增加,细胞分泌糖胺聚糖(GAG)和Ⅱ型胶原蛋白(COI Ⅱ)的含量增大。纳米纤维结构支架具有促进细胞成软骨分化的独特优势,这为软骨组织的构建提供了一种具有潜在应用价值的支架材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪雅真
杨丁柱
关键词:  PLLA纳米纤维支架  生物相容性  成软骨分化  地塞米松    
Abstract: Initially, we prepared poly-L-lactide (PLLA)-based porous scaffolds, and then the biosafety, as well as chondrogenic differentiation potential of the same, were evaluated. The biocompatibility of nanofibrous scaffolds was assessed by using various tests in different models. At first, the cytotoxicity was measured using L929 as cell model using Alamar Blue assay. In addition, the acute systemic toxicity was measured by injecting scaffold in the form of extracts into KM mice. Furthermore, hemolysis test of the scaffold was investigated using fresh blood drawn from rabbit as blood model. The scaffolds resulted in low cytotoxicity, no acute toxicity in mice, and highly compatible with the blood. Eventually, the chondrogenic differentiation potential of C5.18 cells on the designed scaffolds with diversified topology was determined. In addition, dexamethasone (DEX) was used for the enhancement of differentiation process as it favors the differentiation of C5.18 cells at 10-6 mol/L of DEX. The degree of cartilage differentiation and the production of glycosaminoglycans and collagen protein was augmented with the increase in induction time. These nanofibrous scaffolds can serve as a prospect material for cartilage tissue construction with a unique advantage in promoting the differentiation of chondrogenesis.
Key words:  PLLA nanofibrous scaffolds    biocompatibility    chondrogenic differentiation    dexamethasone
                    发布日期:  2018-10-18
ZTFLH:  R318  
作者简介:  洪雅真:女,1988年生,硕士,主要从事生物材料研究 E-mail:hongyazhen@hqu.edu.cn
引用本文:    
洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化[J]. 材料导报, 2018, 32(18): 3239-3243.
HONG Yazhen, YANG Dingzhu. Biocompatibility Assessment and Chondrogenic Differentiation of Poly-L-lactide-based Nanofibrous Scaffolds. Materials Reports, 2018, 32(18): 3239-3243.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.18.025  或          http://www.mater-rep.com/CN/Y2018/V32/I18/3239
1 Deng A H, Chen A Z, Wang S B, et al. Porous nanostructured poly-L-lactide scaffolds prepared by phase inversion using supercritical CO2 as a nonsolvent in the presence of ammonium bicarbonate particles[J]. The Journal of Supercritical Fluids,2013,77:110.
2 Yang D Z, Chen A Z, Wang S B, et al. Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide[J]. Biomedical Materials,2015,10(3):035015.
3 Oyama H T, Tanishima D, Maekawa S. Poly(malic acid-co-L-lactide) as a superb degradation accelerator for poly(L-lactic acid) at physiological conditions[J]. Polymer Degradation and Stability,2016,134:265.
4 Lizundia E, Mateos P, Vilas J L. Tuneable hydrolytic degradation of poly(L-lactide) scaffolds triggered by ZnO nanoparticles[J]. Mate-rials Science and Engineering C,2017,75:714.
5 Huang Y W, Fan X Z. Chitosan/polylactic acid complex for repair of peripheral nerve defects[J]. Chinese Journal of Tissue Engineering Research,2015,19(25):4059(in Chinese).
黄永旺,范学政.几丁糖与聚乳酸合成生物材料修复周围神经缺损[J].中国组织工程研究,2015,19(25):4059.
6 Liu Y G, Zhou X T. Polylactic acid-glycolic acid copolymer/hydroxyapatite composite scaffold repairs laryngeal cartilage defect[J]. Chinese Journal of Tissue Engineering Research,2015,19(52):8379(in Chinese).
刘永刚,周香桃.聚乳酸-乙醇酸共聚物/羟基磷灰石复合支架修复喉软骨缺损[J].中国组织工程研究,2015,19(52):8379.
7 Badaraev A D, Nemoykina A L, Bolbasov E N, et al. PLLA scaffold modification using magnetron sputtering of the copper target to provide antibacterial properties[J]. Resource-Efficient Technologies,2017,3(2):204.
8 Huang K C, Yano F, Murahashi Y, et al. Sandwich-type PLLA-nanosheets loaded with BMP-2 induce bone regeneration in critical-sized mouse calvarial defects[J]. Acta Biomaterialia,2017,59:12.
9 Santos D, Silva D M, Gomes P S, et al. Multifunctional PLLA-ceramic fiber membranes for bone regeneration applications[J]. Journal of Colloid and Interface Science,2017,504:101.
10 Wang Q, Shao W L, Gao Y F, et al. Biomimetic mineralization and biocompatibility of PLGA/TSF electrospun nanofibers[J]. Journal of Materials Science and Engineering,2017,35(2):253(in Chinese).
王倩,邵伟力,高艳菲,等.PLGA/TSF静电纺纳米纤维的仿生矿化及生物相容性[J].材料科学与工程学报,2017,35(2):253.
11 Bao G J, Zhong N, Zhang W X, et al. Research on the performance of PGS/PLLA electrostatic spinning of composite nanofiber scaffold[J]. Materials Review B: Research Papers,2016,30(7):67(in Chinese).
包广洁,钟妮,张文霞,等.PGS/PLLA静电纺丝复合纳米纤维支架的性能研究[J].材料导报:研究篇,2016,30(7):67.
12 Martinez E, Engel E, Planell J A, et al. Effects of artificial micro- and nano-structured surfaces on cell behaviour[J]. Annals of Anatomy-Anatomischer Anzeiger,2009,191(1):126.
13 Palin E, Liu H N, Webster T J. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation[J]. Nanotechnology,2005,16(9):1828.
14 Dalby M J, McCloy D, Robertson M, et al. Osteoprogenitor response to defined topographies with nanoscale depths[J]. Biomate-rials,2006,27(8):1306.
15 Chen W M. Three-dimensional porous scaffolds based on gelatin/polylactic acid nanofibers for articular cartilage tissue regeneration[D]. Shanghai: Donghua University,2017(in Chinese).
陈维明.明胶/聚乳酸纳米纤维三维多孔支架的制备及应用于关节软骨组织再生[D].上海:东华大学,2017.16 Cao J L. Relationship of proteoglycan with the structure and function of cartilage and osteoarthropathy[J]. Journal of Xi’an Jiaotong University(Medical Sciences),2012,33(2):131(in Chinese).
曹峻岭.蛋白聚糖与软骨结构、功能及骨关节病的关系[J].西安交通大学学报(医学版),2012,33(2):131.
17 Gong Y H. Preparation and modification of poly L-lactic acid porous scaffold and manufacture of tissue engineering cartilage[D]. Hangzhou: Zhejiang University,2006(in Chinese).
龚逸鸿.聚乳酸多孔支架的制备、改性及组织工程化软骨的构建[D].杭州:浙江大学,2006.
18 Grigoriadis A E, Heersche J N M, Aubin J E. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: Effect of dexamethasone[J]. The Journal of Cell Biology,1988,106:2139.
19 Deng A H. Fabrication of the SF/PLLA compound tissue enginee-ring scaffolds by supercritical fluids technology[D]. Xiamen: Huaqiao University,2013(in Chinese).
邓爱华.超临界流体技术制备丝素/聚乳酸复合组织工程支架的研究[D].厦门:华侨大学,2013.
20 ISO.10993-2009. Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity[S]. Switzerland: ISO copyright office,2007.
21 全国医疗器械生物学评价标准化技术委员会.GB/T 16886.11-2011医疗器械生物学评价第11部分:全身毒性试验[S].北京:中国标准出版社,2011.
22 全国医疗器械生物学评价标准化技术委员会.GB/T 16886.12-2005医疗器械生物学评价第12部分:样品制备与参照样品[S].北京:中国标准出版社,2005.
23 Mark K V D, Gauss V, Mark H V D, et al. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture[J]. Nature,1977,267(5611):531.
24 Chang W, Tu C, Komuves L, et al. Calcium sensing in cultured chondrogenic RCJ3.1C5.18 cells[J]. Endocrinology,1999,140(4):1911.
25 Talukdar S, Nguyen Q T, Chen A C, et al. Effect of initial cell seeding density on 3D-engineered silkfibroin scaffolds for articular cartilage tissue engineering[J]. Biomaterials,2011,32:8927.
[1] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[2] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[3] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[4] 姜涛, 王瑞彬, 霍枫. 用于体外循环装置的材料涂层技术综述与展望[J]. 《材料导报》期刊社, 2018, 32(13): 2304-2310.
[5] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed