Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 219-222    https://doi.org/10.11896/j.issn.1005-023X.2018.02.012
  物理   材料研究 |材料 |
稻糠基磁性高吸油材料的仿生制备及性能研究
李旭1,2,汪子孺1,2,杨莉1,2,张振东1,2,张友婷1,2,杜毅帆1,2
1 长安大学旱区地下水文与生态效应教育部重点实验室,西安 710054
2 长安大学环境科学与工程学院,西安 710054
Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support
Xu LI1,2,Ziru WANG1,2,Li YANG1,2,Zhendong ZHANG1,2,Youting ZHANG1,2,Yifan DU1,2
1 Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang’an University, Xi’an 710054;
2 College of Environmental Science and Engineering,Chang’an University, Xi’an 710054;
下载:  全 文 ( PDF ) ( 3126KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用多巴胺的自聚合作用使Fe3O4纳米粒子固载于稻糠表面,进而采用十八胺进行样品表面疏水改性,制备得到稻糠基新型磁性疏水吸油材料。利用扫描电子显微镜、傅里叶变换红外光谱、X射线衍射、磁滞回线和接触角测定等技术对制备的样品进行了表征。实验结果表明,多巴胺改性成功实现了Fe3O4纳米粒子在稻糠表面的固载,所制得的稻糠基吸油材料具有较好的磁性,其磁饱和强度达39.6 emu/g,样品的接触角达135°,具有高疏水性。在对三氯甲烷等七种油性物质的吸油实验中发现,稻糠基新型磁性疏水吸油材料的最高吸油量可达自身质量的6.83倍,且样品的适用范围广、重复利用率高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李旭
汪子孺
杨莉
张振东
张友婷
杜毅帆
关键词:  多巴胺  稻糠  十八胺  磁性吸油材料    
Abstract: 

A novel magnetic rice chaff oil absorption material was successfully synthesized by immobilizing Fe3O4 nanoparticles onto rice chaff with the aid of mussel-inspired polydopamine and subsequently chemical modification by octadecylamine with low surface energy. Scanning electron microscope (SEM), infrared spectrometer (FTIR) and X-ray diffraction (XRD) instrument were used to characterize the morphology, crystallinity and functional groups of the obtained magnetic rice chaff. The results indicated the magnetic rice chaff had large water contact angle of 135° and magnetic saturation intensity of 39.6 emu/g. The highest oil absorption of magnetic rice chaff reached 6.83 times of its own weight for chloroform. The prepared magnetic rice chaff oil absorption material with high recyclability could be widely used in large-scale removal of spilled oil from water.

Key words:  dopamine    rich chaff    octadecylamine    magnetic oil absorption material
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  O69  
基金资助: 陕西省自然科学基金(2015JQ5173);2016年中央高校基本科研业务费专项资金(310829162016);长安大学国家级大学生创新创业训练计划项目(201710710160)
引用本文:    
李旭,汪子孺,杨莉,张振东,张友婷,杜毅帆. 稻糠基磁性高吸油材料的仿生制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 219-222.
Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support. Materials Reports, 2018, 32(2): 219-222.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.012  或          https://www.mater-rep.com/CN/Y2018/V32/I2/219
图1  (a)原始稻糠,(b)Fe3O4纳米粒子和(c,d)稻糠基磁性高吸油材料的扫描电子显微镜照片
图2  (a)原始稻糠,(b)稻糠基磁性高吸油材料的EDS图谱
图3  (a)Fe3O4纳米粒子、(b)原始稻糠和(c)稻糠基磁性高吸油材料的XRD图谱
图4  (a)原始稻糠和(b)稻糠基磁性吸油材料的红外谱图
图5  水滴(2 μL)在(a)稻糠、(b)稻糠基磁性高吸油材料表面上的接触角
图6  (a) Fe3O4纳米粒子、(b)稻糠基磁性高吸油材料的磁滞回线
图7  稻糠和稻糠基磁性高吸油材料在纯油中的吸油率
图8  (a)不同浓度NaCl溶液、(b)pH值对稻糠基磁性吸油材料吸油性能的影响(电子版为彩图)
图9  稻糠基磁性高吸油材料的回收率
1 Cojocaru C, Macoveanu M, Cretescu I . Peat-based sorbents for the removal of oil spills from water surface: Application of artificial neural network modeling[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011,384(1):675.
2 Al-Majed A A , et al. A sustainable approach to controlling oil spills[J]. Journal of Environmental Management, 2012,113:213.
3 McNutt M K, Camilli R, Crone T J , et al. Review of flow rate estimates of the deepwater horizon oil spill[J]. Proceedings of the National Academy of Sciences, 2012,109(50):20260.
4 4 Radeti c ' M M , Joci c ' D M , Iovanti c ' P M , et al. Recycled wool-based nonwoven material as an oil sorbent[J]. Environmental Science & Technology, 2003,37(5):1008.
5 Wu B, Zhou M H . Sorption of styrene from aqueous solutions with oil absorptive resin[J]. Journal of Environmental Management, 2009,90(1):217.
6 Okiel K, El-Sayed M, El-kady M Y . Treatment of oil-water emulsions by adsorption onto activated carbon, bentonite and deposited carbon[J]. Egyptian Petroleum Research Institute, 2011,20(2):9.
7 Pan J, Xu L, Dai J, Li X , et al. Magnetic molecularly imprinted polymers based on attapulgite/Fe3O4 particles for the selective recognition of 2,4-dichlorophenol[J]. Chemical Engineering Journal, 2011,174:68.
8 Zhai R, Tian F, Xue R, Jiao F , et al. Metal ion-immobilized magnetic nanoparticles for global enrichment and identification of phosphopeptides by mass spectrometry[J]. RSC Advances, 2016,6:1670.
9 Song R, Bai B, Puma G L , et al. Biosorption of azo dyes by raspberry-like Fe3O4@yeast magnetic microspheres and their efficient regeneration using heterogeneous fenton-like catalytic processes over an up-flow packed reactor[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015,115:547.
10 Konwar A, Gogoi A, Chowdhury D . Magnetic alginate-Fe3O4 hydrogel fiber capable of ciprofloxacin hydrochloride adsorption/separation in aqueous solution[J]. RSC Advances, 2015,5:81573.
11 Lee H, Dellatore S M, Miller W M , et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007,318(5849):426.
12 Huang S . Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water[J]. ACS Applied Materials & Interfaces, 2014,6(19):17144.
13 Wang H, Wang E, Liu Z , et al. A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil-water separation through a chemical fabrication[J]. Journal of Materials Chemistry A, 2015,3:266.
14 Likon M, Remskar M, Ducman V et al. Populus seed fibers as a natural source for production of oil super absorbents[J]. Journal of Environmental Management, 2013,114:158.
15 Wang J, Zheng Y, Wang A . Preparation and properties of kapok fiber enhanced oil sorption resins by suspended emulsion polymerization[J]. Journal of Applied Polymer Science, 2013,127:2184.
16 Sun X F, Sun R C, Sun J X . Acetylation of sugarcane bagasse using NBS as a catalyst under mild reaction conditions for the production of oil sorption-active materials[J]. Bioresource Technology, 2004,95:343.
17 Kim B G, Kim S, Lee H , et al. Wisdom from the human eye: A synthetic melanin radical scavenger for improved cycle life of Li-O2 battery[J]. Chemistry of Materials, 2014,26:4757.
18 Zeng A, Chen R, Lin Z , et al. SO2 adsorption property of polydopamine/montmorillonite composites[J]. Chinese Journal of Environmental Engineering, 2015,9(10):4982(in Chinese).
19 曾安然, 陈汝盼, 林志杰 , 等. 聚多巴胺/蒙脱土复合材料对SO2的吸附性能[J]. 环境工程学报, 2015,9(10):4982.
20 Yang L, Wang Z, Yang L , et al. Coco peat powder as a source of magnetic sorbent for selectiveoil-water separation[J]. Industrial Crops and Products, 2017,101:1.
[1] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[2] 包亚晴, 黄李金鸿, 李新冬, 黄彪林, 黄万抚. PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用[J]. 材料导报, 2023, 37(6): 21090216-8.
[3] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[4] 黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展[J]. 材料导报, 2022, 36(8): 20070335-7.
[5] 杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
[6] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[7] 朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
[8] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[9] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[10] 王楠, 胡程耀, 郭世艳, 廖俊, 霍冀川. 多巴胺修饰氮化硼对环氧树脂复合材料性能的影响[J]. 材料导报, 2019, 33(22): 3837-3841.
[11] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[12] 沈佳丽, 石畅, 施冬健, 章朱迎, 陈明清. 多巴胺对骨修复材料表面改性的研究进展[J]. 《材料导报》期刊社, 2017, 31(21): 54-61.
[13] 崔国廉, 但年华, 但卫华. 多巴胺表面修饰胶原膜促进细胞粘附和增殖的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 20-24.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed