Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23110080-9    https://doi.org/10.11896/cldb.23110080
  高分子与聚合物基复合材料 |
PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理
刘世盟1, 郭乃胜1,*, 崔世超1, 褚召阳1, 赵近川2
1 大连海事大学交通运输工程学院,辽宁 大连 116026
2 海南大学材料科学与工程学院,海口 570228
Mechanical and Thermal Insulation Properties of PDA/GO/PUF Polyurethane Foam and the Corresponding Microscopic Mechanisms
LIU Shimeng1, GUO Naisheng1,*, CUI Shichao1, CHU Zhaoyang1, ZHAO Jinchuan2
1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
2 School of Materials Science and Engineering, Hainan University, Haikou 570228, China
下载:  全 文 ( PDF ) ( 5646KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究聚多巴胺/氧化石墨烯/软质聚氨酯泡沫(PDA/GO/PUF)的力学与隔热性能,采用一种新工艺制备了PDA/GO/PUF,利用压缩实验和接触角测试对PDA/GO/PUF的物理力学性能进行了测试,利用红外热像仪和燃烧实验对PDA/GO/PUF的隔热性能进行了表征,并通过热重(TG)、扫描电子显微镜(SEM)和傅里叶红外光谱(FTIR)进行了微观机理解释。结果表明:在循环荷载作用下,PDA/GO/PUF复合材料未产生永久变形,且具有较小的能量损失系数、较大的最大应力、较平稳的压缩强度和杨氏模量,表现出优异的力学稳定性和抗疲劳性能;PDA/GO/PUF表面疏水性能相较于PUF有显著提升,接触角增大了13.83°;PDA/GO/PUF较PUF表现出更优异、更稳定的隔热效果,且在燃烧过程中没有出现熔滴现象;在GO/PUF泡沫表面自聚合形成的PDA纳米涂层具有优异的黏附性,能够将脱离GO/PUF的GO颗粒也吸附在PDA/GO/PUF表面;PDA/GO/PUF在燃烧过程中形成了致密的炭层,有效地隔绝了热量并降低了PDA/GO/PUF的热分解速率,与PUF相比,其T-50%分解温度提升了240 ℃,残炭量提升了21.65%,显著增强了材料的热稳定性;PDA/GO/PUF分别在1 420 cm-1和1 714 cm-1处出现了属于PDA涂层的N-H弯曲振动特征峰和GO的C=O伸缩振动特征峰,进一步证实了PDA/GO/PUF的成功制备。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘世盟
郭乃胜
崔世超
褚召阳
赵近川
关键词:  聚多巴胺  PDA/GO/PUF聚氨酯泡沫  力学性能  隔热性能  微观机理    
Abstract: To investigate the mechanical and thermal insulation properties of polydopamine/graphene oxide/polyurethane foam(PDA/GO/PUF), a novel process was employed to fabricate PDA/GO/PUF. The physical and mechanical properties of PDA/GO/PUF were tested using compression experiments and contact angle measurements, while the thermal insulation properties were characterized using an infrared thermal imager and combustion experiments. Microscopic mechanisms were explained via thermogravimetric(TG) analysis, scanning electron microscopy(SEM), and Fourier-transform infrared spectroscopy(FTIR). Results showed that the PDA/GO/PUF composite material subjected to cyclic load did not undergo permanent deformation and had a low energy loss coefficient, high maximum stress, and stable compression strength and Young's modulus, demonstrating excellent mechanical stability and fatigue resistance. The hydrophobicity of the PDA/GO/PUF surface was significantly improved compared to PUF, with a 13. 83° increase in contact angle. PDA/GO/PUF exhibited superior and more stable thermal insulation than PUF, without any dripping during combustion. The PDA nanocoating, self-polymerized on the GO/PUF foam surface, possessed outstanding adhesiveness, which also adsorbed GO particles detached from the GO/PUF onto the PDA/GO/PUF surface. During combustion, a dense carbon layer formed on PDA/GO/PUF, effectively insulating heat and slowing down the thermal decomposition rate of PDA/GO/PUF. Compared to PUF, its T-50% decomposition temperature increased by 240 ℃, and the char yield increased by 21.65%, significantly enhancing the material's thermal stability. Characteristic peaks at 1 420 cm-1and 1 714 cm-1 belonging to the PDA coating's N-H bending vibration and the GO's C=O stretching vibration, respectively, further confirmed the successful fabrication of PDA/GO/PUF.
Key words:  polydopamine    PDA/GO/PUF polyurethane foam    mechanical property    thermal insulation performance    microscopic mechanism
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TQ328  
基金资助: 国家自然科学基金(51308084);中央高校基本科研业务费专项资金(3132017029);大连海事大学“双一流”建设专项(BSCXXM021);辽宁公路科技创新重点科研项目(201701);大连市科技创新基金(2020JJ26SN062);辽宁省教育厅基金项目(LJKMZ20220922);大连市重点科技研发计划项目(2023YF22SN043)
通讯作者:  *郭乃胜,大连海事大学交通运输工程学院教授、博士研究生导师,2007 年 3 月于大连海事大学获得工学博士学位。2009—2012 年在哈尔滨工业大学进行博士后研究工作,2013—2014 年在美国密歇根理工大学作访问学者。研究方向为沥青与沥青混合料,近年来在国内外学术期刊发表学术论文70 余篇,其中SCI、EI检索40余篇。naishengguo@126.com   
作者简介:  刘世盟,2019年1月于哈尔滨工业大学获得工学学士学位。现为大连海事大学交通运输工程学院硕士研究生,在郭乃胜教授的指导下进行研究。目前主要研究领域为多功能柔性聚合物泡沫材料。
引用本文:    
刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
LIU Shimeng, GUO Naisheng, CUI Shichao, CHU Zhaoyang, ZHAO Jinchuan. Mechanical and Thermal Insulation Properties of PDA/GO/PUF Polyurethane Foam and the Corresponding Microscopic Mechanisms. Materials Reports, 2024, 38(22): 23110080-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110080  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23110080
1 Geng J, Feng F, Wang D T. Materials Reports, 2012, 26(3), 116 (in Chinese).
耿佳, 冯芳, 王东田. 材料导报, 2012, 26(3), 116.
2 Zhou F, Zhang T, Zou B, et al. Polymer Degradation and Stability, 2020, 171, 109029.
3 Wang Y, Kang W, Chen C, et al. Journal of Hazardous Materials, 2019, 365, 395.
4 Cui Z, Chen Y, Meng D, et al. Polymer Degradation and Stability, 2023, 208, 110238.
5 Liu X, Salmeia K A, Rentsch D, et al. Journal of Analytical and Applied Pyrolysis, 2017, 124, 219.
6 Jia D, Guo X, He J, et al. Polymer Degradation and Stability, 2019, 167, 189.
7 Usta N. Journal of Applied Polymer Science, 2012, 124(4), 3372.
8 Zhang K, Hong Y, Wang N, et al. Journal of Applied Polymer Science, 2018, 135(5), 45779.
9 Lazar S T, Kolibaba T J, Grunlan J C. Nature Reviers Materials, 2020, 5(4), 259.
10 Cho J H, Vasagar V, Shanmuganathan K, et al. Chemistry of Materials, 2015, 27(19), 6784.
11 Kim H, Kim D W, Vasagar V, et al. Advanced Functional Materials, 2018, 28(39), 1803172.
12 Jiao D, Sima H, Shi X, et al. Chemical Engineering Journal, 2023, 474, 145588.
13 Feng M, Li W, Liu X, et al. Polymer Testing, 2021, 93, 106883.
14 Zou R, Liu F, Hu N, et al. ACS Applied Materials & Interfaces, 2020, 12(51), 57391.
15 Pathak A K, Borah M, Gupta A, et al. Composites Science and Technology, 2016, 135, 28.
16 Zhou J, Yao Z, Chen Y, et al. Polymer Composites, 2014, 35(3), 581-586.
17 Chen L, Chai S, Liu K, et al. ACS Applied Materials & Interfaces, 2012, 4(8), 4398.
18 Kai M F, Zhang L W, Liew K M. Carbon, 2019, 146, 181.
19 Liu J X. Study on structural adjustment and properties of thermoplastic polyurethane foam fabricated by supercritical carbon dioxide foaming. Master's Thesis, Shandong University, China, 2020(in Chinese).
刘俊霞. 超临界二氧化碳发泡制备热塑性聚氨酯泡沫及其结构调控与性能研究. 硕士学位论文, 山东大学, 2020.
20 Liu Y, Fang Y, Liu X, et al. Composites Science and Technology, 2017, 151, 164.
21 Du W, Jin Y, Lai S, et al. Applied Surface Science, 2019, 492, 298.
22 Zhu X, Zhang W, Lu G, et al. ACS Nano, 2022, 16(10), 16724.
23 Huang L, Arena J T, Manickam S S, et al. Journal of Membrane Science, 2014, 460, 241.
24 Lu W, Qin F, Wang Y, et al. ACS Applied Materials & Interfaces, 2019, 11(33), 30278.
25 Coy E, Iatsunskyi I, Colmenares J C, et al. ACS Applied Materials & Interfaces, 2021, 13(19), 23113.
26 Cheng C, Li S, Zhao W, et al. Journal of Membrane Science, 2012, 417, 228.
27 Zheng S F, Wang Y Y, Zhang Z K. Journal of Functional Materials, 2024, 55(1), 1048(in Chinese).
郑舒方, 王玉印, 张泽楷. 功能材料, 2024, 55(1), 1048.
28 Li S K. Structural design and performance study of highthermal conductivity and insulating composites basedon multiple and multiscale fillers. Ph.D. Thesis, North China Electric Power University, China, 2023(in Chinese).
李石琨. 基于多元多尺度填料的高导热绝缘复合材料结构设计及性能研究. 博士学位论文, 华北电力大学, 2023.
29 Shtein M, Nadiv R, Buzaglo M, et al. Chemistry of Materials, 2015, 27(6), 2100.
30 Li L, Zhou B, Han G, et al. Composites Science and Technology, 2020, 197, 108229.
31 Jiang Y, Deng S, Hong S, et al. ACS Nano, 2018, 12(11), 11366.
32 Wang X, Chen Z, Yang P, et al. Polymer Chemistry, 2019, 10(30), 4194.
33 Yang W, Wu S, Yang W, et al. Composites Part B: Engineering, 2020, 186, 107828.
34 Kim F, Luo J, Cruz-Silva R, et al. Advanced Functional Materials, 2010, 20(17), 2867.
35 Xu L, Jiang S, Li B, et al. Chemistry of Materials, 2015, 27(12), 4358.
36 Rahmani Z, Samadi M T, Kazemi A, et al. Journal of Environmental Chemical Engineering, 2017, 5(5), 5025.
37 Cai D, Jin J, Yusoh K, et al. Composites Science and Technology, 2012, 72(6), 702.
38 Shi X, Yang P, Peng X, et al. Polymer, 2019, 170, 65.
39 Chen S, Xu N, Shi J. Progress in Organic Coatings, 2004, 49(2), 125.
40 Stankovich S, Pinerr R D, Nguyen S B T, et al. Carbon, 2006, 44(15), 3342.
41 Cheng Y, Barras A, Lu S, et al. Separation and Purification Technology, 2020, 236, 116240.
42 Liu C, Fang Y, Miao X, et al. Separation and Purification Technology, 2019, 229, 115801.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed