Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 115-120    https://doi.org/10.11896/j.issn.1005-023X.2017.011.016
  新材料新技术 |
DNA电化学传感器对金属离子检测的研究进展*
李娜, 李曦, 褚梅, 程丹, 周键, 陈奇, 李玉刚, 董玉林
武汉理工大学化学化工与生命科学学院,武汉 430070
Applying DNA Electrochemical Sensors to the Detection of Metal Ions: A Review
LI Na, LI Xi, CHU Mei, CHENG Dan, ZHOU Jian, CHEN Qi, LI Yugang, DONG Yulin
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 1869KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于 DNAzyme、T-T和C-C之间错配以及G-四链体等能与金属离子特异性结合,基于DNA与金属离子相互作用来检测金属离子的DNA电化学传感器逐渐发展起来。介绍了几种DNA电化学传感器检测金属离子的新方法,并对DNA电化学传感器对金属离子检测的发展趋势和研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李娜
李曦
褚梅
程丹
周键
陈奇
李玉刚
董玉林
关键词:  金属离子  DNA电化学传感器  特异性结合    
Abstract: Basing on the special interaction between the metal ions and nucleic acids (DNAzyme, G-quadruplexed DNA and the bases of DNA), the DNA electrochemical sensors for the detection of metal ions are developed. In this paper, several DNA electrochemical sensors for the metal ions detection are introduced and the prospects for the future research are proposed.
Key words:  metal ions    DNA electrochemical sensors    special interaction
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TB33  
  O657.1  
基金资助: 国家自然科学基金(51273155);中央高校基本科研业务费专项资金(2016IB005)
通讯作者:  李曦:通讯作者,女,1968年生,教授,主要从事电化学研究 E-mail:chemlixi@whut.edu.cn   
作者简介:  李娜:女,1990年生,硕士研究生, 从事电化学修饰电极研究 E-mail:lina965552058@whut.edu.cn
引用本文:    
李娜, 李曦, 褚梅, 程丹, 周键, 陈奇, 李玉刚, 董玉林. DNA电化学传感器对金属离子检测的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 115-120.
LI Na, LI Xi, CHU Mei, CHENG Dan, ZHOU Jian, CHEN Qi, LI Yugang, DONG Yulin. Applying DNA Electrochemical Sensors to the Detection of Metal Ions: A Review. Materials Reports, 2017, 31(11): 115-120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.016  或          http://www.mater-rep.com/CN/Y2017/V31/I11/115
1 Benamor M, Aguerssif N. Simultaneous determination of calcium and magnesium by derivative spectrophotometry in pharmaceutical products[J]. Spectrochim Acta Part A: Mol Biomol Spectrosc,2008,69(2):676.
2 Arduini F, Calvo J Q, Palleschi G, et al. Bismuth-modified electrodes for lead detection[J]. TrAC Trends Anal Chem,2010,29(11):1295.
3 Quintana J C, Arduini F, Amine A, et al. Part two: Analytical optimisation of a procedure for lead detection in milk by means of bismuth-modified screen-printed electrodes[J]. Anal Chim Acta,2012,736:92.
4 Yu J, Yang S, Sun D, et al. Simultaneously determination of multi metal elements in water samples by liquid cathode glow discharge-atomic emission spectrometry[J]. Microchem J, 2016,128:325.
5 Capelo J L, Lavilla I, Bendicho C. Room temperature sonolysis-based advanced oxidation process for degradation of organomercu-rials: Application to determination of inorganic and total mercury in waters by flow injection-cold vapor atomic absorption spectrometry[J]. Anal Chem,2000,72(20):4979.
6 Habte G, Hwang I M, Kim J S, et al. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA)[J]. Food Chem, 2016,212:512.
7 Li N, Zhang D, Zhang Q, et al. Combining localized surface plasmon resonance with anodic stripping voltammetry for heavy metal ion detection[J]. Sensors Actuators B: Chem,2016, 231:349.
8 Lin Z, Li X, Kraatz H B. Impedimetric immobilized DNA-based sensor for simultaneous detection of Pb2+, Ag+, and Hg2+[J]. Anal Chem,2011,83(17):6896.
9 Zhou Y, Tang L, Zeng G, et al. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review[J]. Sensors Actuators B:Chem,2016,223:280.
10 Chen X, Tian R, Zhang Q, et al. Target-induced electronic switch for ultrasensitive detection of Pb2+ based on three dimensionally ordered macroporous Au-Pd bimetallic electrode[J]. Biosensors Bioe-lectron,2014,53:90.
11 Xiao Y, Rowe A A, Plaxco K W. Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly[J]. J Am Chem Soc,2007,129(2):262.
12 Zhuang J, Fu L, Xu M, et al. DNAzyme-based magneto-controlled electronic switch for picomolar detection of lead (Ⅱ) coupling with DNA-based hybridization chain reaction[J]. Biosensors Bioelectron,2013,45:52.
13 Lan T, Furuya K, Lu Y. A highly selective lead sensor based on a classic lead DNAzyme[J]. Chem Commun,2010,46(22):3896.
14 Gao A, Tang C X, He X W, et al. Electrochemiluminescent lead biosensor based on GR-5 lead-dependent DNAzyme for Ru(phen)32+ intercalation and lead recognition[J]. Analyst,2013, 138(1):263.
15 Yang Y, Yuan Z, Liu X P, et al. Electrochemical biosensor for Ni2+ detection based on a DNAzyme-CdSe nanocomposite[J]. Biosensors Bioelectron,2016,77:13.
16 Liu J, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity[J]. J Am Chem Soc,2007,129(32):9838.
17 Hu W, Min X, Li X, et al. DNAzyme catalytic beacons-based a label-free biosensor for copper using electrochemical impedance spectroscopy[J]. RSC Adv,2016,6(8):6679.
18 Ronald S B, Rao N G. Speciation of ternary complexes of calcium(Ⅱ) and magnesium(Ⅱ) with L-glutamine and succinic acid in ethylene glycol-water mixtures[J]. J Indian Chem Soc,2002,79(10):799.
19 Cheng Y, Huang Y, Lei J, et al. Design and biosensing of Mg2+-dependent DNAzyme-triggered ratiometric electrochemiluminescence[J]. Anal Chem,2014,86(10):5158.
20 Miyake Y, Togashi H, Tashiro M, et al. Mercury(Ⅱ)-mediated formation of thymine-Hg(Ⅱ)-thymine base pairs in DNA duplexes[J]. J Am Chem Soc,2006,128(7):2172.
21 Liu S, Kang M, Yan F, et al. Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg(Ⅱ) detection[J]. Electrochim Acta,2015,160:64.
22 Qiu Z, Tang D, Shu J, et al. Enzyme-triggered formation of enzyme-tyramine concatamers on nanogold-functionalized dendrimer for impedimetric detection of Hg(Ⅱ) with sensitivity enhancement[J]. Biosensors Bioelectron,2016,75:108.
23 Chen D M, Gao Z F, Jia J, et al. A sensitive and selective electrochemical biosensor for detection of mercury(Ⅱ) ions based on nicking endonuclease-assisted signal amplification[J]. Sensors Actuators B: Chem,2015,210:290.
24 Ono A, Cao S, Togashi H, et al. Specific interactions between silver(Ⅰ) ions and cytosine-cytosine pairs in DNA duplexes[J]. Chem Commun,2008,44(39):4825.
25 Liu G, Yuan Y, Wei S, et al. Impedimetric DNA-based biosensor for silver ions detection with hemin/G-quadruplex nanowire as enhancer[J]. Electroanalysis,2014,26(12):2732.
26 Yang Y, Kang M, Fang S, et al. A feasible C-rich DNA electrochemical biosensor based on Fe3O4@3D-GO for sensitive and selective detection of Ag+[J]. J Alloys Compd,2015,652:225.
27 Choi M S, Yoon M, Baeg J O, et al. Label-free dual assay of DNA sequences and potassium ions using an aptamer probe and a molecular light switch complex[J]. Chem Commun,2009, 45(47):7419.
28 Lin Z, Chen Y, Li X, et al. Pb2+ induced DNA conformational switch from hairpin to G-quadruplex: Electrochemical detection of Pb2+[J]. Analyst,2011,136(11):2367.
29 Bang G S, Cho S, Kim B G. A novel electrochemical detection me-thod for aptamer biosensors[J]. Biosensors Bioelectron,2005,21(6):863.
30 Sheikhzadeh E, Chamsaz M, Turner A P F, et al. Label-free impedimetric biosensor for salmonella typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer[J]. Biosensors Bioelectron,2016,80:194.
31 Gao F, Gao C, He S, et al. Label-free electrochemical lead(Ⅱ) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform[J]. Biosensors Bioelectron,2016, 81:15.
32 Zhang Z, Yin J, Wu Z, et al. Electrocatalytic assay of mercury(Ⅱ) ions using a bifunctional oligonucleotide signal probe[J]. Anal Chim Acta,2013,762:47.
[1] 宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
[2] 罗忠涛,刘垒,康少杰,王亚洲,杨久俊. 地聚合物固化/稳定有毒重金属及作用机理研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1834-1841.
[3] 梁兴, 高国华, 吴广明. 氧化钒作锂离子电池正极材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 12-33.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed