Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2012-2018    https://doi.org/10.11896/cldb.19120131
  无机非金属及其复合材料 |
木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能
余先纯, 孙德林, 计晓琴, 王张恒
中南林业科技大学材料科学与工程学院,长沙 410004
Structural Regulation and Electrochemical Energy Storage of Woodceramic Electrode Assembled with Lignin Based Carbon Nanosheet
YU Xianchun, SUN Delin, JI Xiaoqin, WANG Zhangheng
College of Material and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
下载:  全 文 ( PDF ) ( 5834KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以杨木基木陶瓷为骨架,采用电沉积法组装黑液木质素,经高温烧结和物理活化制备木质素基碳纳米片组装块状木陶瓷电极,并对序列组装机制、结构与形貌、物相构成、电化学储能机制和电化学性能进行了探讨与分析。结果表明:黑液木质素在电场的作用下可按照一定的序列组装在木陶瓷骨架的表面与孔隙中,高温烧结后木质素转化为碳纳米片,部分依然保持有序排列;同时,所制备的木陶瓷电极主要由无定型炭与石墨微晶构成,具有多层次孔隙,且木质素的组装可优化孔隙结构。其中电沉积10 min、1 000 ℃保温烧结2 h、180 ℃活化6 h的试件具有较好的电化学性能:在扫描速率为0.25 A·g-1时比电容可达141.8 F·g-1;充放电循环1 000次后比电容保持率为88.1%;在能量密度为132.6 Wh·kg-1时,功率密度达12.8 W·kg-1,该木陶瓷电极具有较好的储能性能与应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余先纯
孙德林
计晓琴
王张恒
关键词:  块状木陶瓷电极  黑液木质素  序列组装  结构调控  储能机理    
Abstract: Blocky woodceramic electrode was prepared by high temperature sintering and physical activation which uses poplar based woodceramics as skeleton and assembled pulping black liquor lignin based carbon nanosheet with electrodeposition method. The electrochemical deposition mechanism, structure and morphology, phase composition, chemical energy storage mechanism and electrochemical performance had been discussed and analyzed. The results showed that pulping black liquor lignin was assembled on the surface and in the pores of woodceramics skeleton in a certain sequence under the action of electric field, and the lignin was converted into carbon nanometer sheets after high temperature sintered, some of them still remained the orderly arrangement. Meanwhile, the electrode was mainly composed of amorphous carbon and graphite microcrystalline with multilayer pores, which could be regulated and optimized by the assembly of lignin. The specimen had better electrochemical performance, which electrodeposited for 10 min, sintered at 1 000 ℃ for 2 h and activated at 180 ℃ for 6 h. When the scanning rate was 0.25 A·g-1, the specific capacitance could reach 141.8 F·g-1, and the specific capacitance retention rate was 88.1% after 1 000 cycles of charge and discharge. As the energy density was 132.6 Wh·kg-1, the power density was 12.8 W·kg-1, indicating a good energy storage perfor-mance and application potential.
Key words:  blocky woodceramics electrode    pulping black liquor lignin    sequence assembly    structural control    energy storage mechanism
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TQ138  
基金资助: 国家自然科学基金(31670572;31270611)
通讯作者:  sdlszy@163.com   
作者简介:  余先纯,教授,硕士研究生导师。主要从事生物质多孔碳材料、高分子胶黏剂等方面的教学与研究工作。主持省部级项目2项,参与国家及省部级项目多项。
孙德林,教授,博士,博士研究生导师。主持国家自然科学基金面上项目2项,主持和参与省部级项目多项。主要从事生物质多孔碳材料、木质复合材料、木制品设计与加工等方面的教学和研究工作。
引用本文:    
余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
YU Xianchun, SUN Delin, JI Xiaoqin, WANG Zhangheng. Structural Regulation and Electrochemical Energy Storage of Woodceramic Electrode Assembled with Lignin Based Carbon Nanosheet. Materials Reports, 2021, 35(2): 2012-2018.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120131  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2012
1 Takasaki A, Iijima S, Yamana T, et al. Journal of Shanghai Jiaotong University, 2012, 17(3), 330.
2 Zhou W, Yu Y, Xiong X, et al. Materials, 2018, 11(6), 878.
3 Huang Z K, Lü Q F, Lin Q L, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22(5), 1113.
4 Huang T X, Li Z, Huang Y Q. Ceramics International, 2019, 8, 217.
5 Sun D, Yu X, Ji X, et al. Journal of Alloys and Compounds, 2019, 805, 327.
6 Ji X Q, Sun D L, Yu X C, et al. Materials Report B: Research Papers, 2019, 33(10), 3390(in Chinese).
计晓琴,孙德林,余先纯,等.材料导报:研究篇, 2019, 33(10), 3390.
7 Adriana M N S, Damien S, Paula S F, et al. Journal of Power Sources, 2018, 397, 296.
8 Atta-Obeng E, Dawson-Andoh B, Seehra M S, et al. Biomass and Bioe-nergy, 2017, 107, 172.
9 Yu X C, Sun D L, Ji X Q. Journal of Inorganic Materials, 2018, 32(12), 1289(in Chinese).
余先纯,孙德林,计晓琴.无机材料学报, 2018, 32(12), 1289.
10 Wang C, Wu D, Wang H, et al. Journal of Materials Chemistry A, 2018, 6, 1244.
11 Uthen T, Sakda L, Nicharat M, et al. Journal of Materials Science, 2017, 52, 6837
12 Lee S H, Kim J M. Energy, 2018, 150, 816.
13 Veksha A, Moo J G S, Krikstolaityte V, et al. Journal of Electroanalytical Chemistry, 2019, 849, 113368.
14 Farma R, Deraman M, Awitdrus A, et al. Bioresource Technology, 2013, 132, 254.
15 Wanga Y, Lia H, Rena Y, et al. Nanotechnology, 2018, 38, 385402.
16 Li S J. Study on a new porous carbon material—woodceramics. Ph.D. Thesis, Northeast Forestry University, China, 2001(in Chinese).
李淑君. 新型多孔炭材料——木陶瓷的研究.博士学位论文,东北林业大学,2001.
17 Javier F R, Xabier E, Fabio H R, et al. Fuel Processing Technology, 2020, 197, 106201.
18 Sung J A, Zhu Y, Sun H L, et al. The Journal of Physical Chemistry Letters, 2010, 1, 1259.
19 Pei S, Du J, Zeng Y, et al. Nanotechnology, 2009, 20, 235707.
20 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306, 666.
21 Erdélyi Z, Beke D L. Scripta Materialia, 2003, 49(6), 613.
22 Chen G H, Wang G X. Application of electrochemical method, Chemical Industry Press, China, 2003(in Chinese).
陈国华,网光信.电化学方法应用, 化学工业出版社, 2003.
23 He Z X, Li U Y, Yang D Y. Transducer and Microsystem Technologies, 2011, 30(5), 37(in Chinese).
贺赵霞,刘莹,杨大勇.传感器与微系统, 2011, 30(5), 37.
24 Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons Inc., Hoboken, 2001.
25 Sun D L, Yu X C, Sun D B, et al. China Power Science and Technolog, 2017, 23(5), 13(in Chinese).
孙德林,余先纯,孙德彬,等.中国粉体技术, 2017, 23(5), 13.
26 Addoun A, Dentzer J, Ehrburger P. Carbon, 2002, 40, 1140.
27 Roy D, Chhowalla M, Wang H, et al. Chemical Physics Letters, 2003, 373, 52.
28 Hu E, Yu X Y, Chen F, et al. Advanced Energy Materials, 2017, 9, 1702476.
29 Shi C L, Xing B L, Zeng H H, et al. Materials Review A: Review Papers, 2018, 32(10), 3318(in Chinese).
史长亮,邢宝林,曾会会,等.材料导报:综述篇, 2018, 32(10), 3318.
30 Hu Y, Feng Y, Xu C, et al. Journal of Materials Chemistry A, 2018, 6, 14103.
31 Xu H, Hu X, Yang H, et al. Advanced Energy Materials, 2014, 5, 1401882.
32 De L R. Electrochimica Acta, 1963, 8(10), 751.
33 Conway B E. Electrochemical supercapacitors: Scientific fundamentals and technological applications, Kluwer Academic Plenum Publishers, New York, 1999.
34 Thubsuang U, Laebang S, Manmuanpom N, et al. Journal of Materials Science, 2017, 52, 6837.
35 Soffer A, Golub D, Oren Y. Journal of Electroanalytical Chemistry, 1989, 260, 338.
36 Wang A E, Greber I, Angus J C. Journal of Electrostatics, 2019, 101, 103359.
37 Phulpoto S, Memon M A, Yan S K, et al. Journal of Nanoscience and Nanotechnology, 2018, 17, 1.
38 Zhou W, Zheng K, He L, et al. Nano Letters, 2008, 8, 1147.
39 Yu X C, Sun D L, Sun D B, et al. Wood Science and Technology, 2010, 46, 23.
40 Xu H, Hu X, Yang H, et al. Advanced Energy Materials, 2014, 5, 1401882.
41 Hu E, Yu X Y, Chen F, et al. Advanced Energy Materials, 2017, 9, 1702476.
42 Huang J, Meng P, Liu X. Journal of Alloys and Compounds, 2019, 805, 654.
43 Thubsuang U, Laebang S, Manmuanpom N, et al. Journal of Materials Science, 2017, 52, 6837.
44 Inoue H, Namba Y, Higuchi E, et al. Journal of Power Sources, 2010, 195, 6239.
45 Xu H, Hu X, Yang H, et al. Advanced Energy Materials, 2014, 5(6), 1401882.
[1] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[2] 刘兆麟. 纳米蛛网纤维材料的可控构筑与应用[J]. 材料导报, 2019, 33(5): 907-916.
[3] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[4] 杨亚文, 王娜, 任俊芳, 高贵, 陈生圣, 王宏刚. 核壳纳米复合润滑材料研究进展[J]. 材料导报, 2019, 33(19): 3242-3250.
[5] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed