Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21185-21194    https://doi.org/10.11896/cldb.20040206
  无机非金属及其复合材料 |
碳纤维复合材料自动铺放关键技术的现状与发展趋势
曹忠亮1,2, 郭登科2, 林国军2, 胡清明2, 富宏亚3
1 江苏理工学院机械工程学院,常州 213000
2 齐齐哈尔大学机电工程学院,齐齐哈尔 161001
3 哈尔滨工业大学机电工程学院,哈尔滨 150001
Current Situation and Development Trend of Key Technologies for Automated Placement of Carbon Fiber Composites
CAO Zhongliang1,2,GUO Dengke2,LIN Guojun2,HU Qingming2,FU Hongya3
1 School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213000, China
2 School of Mechatronics Engineering, Qiqihar University,Qiqihar 161001, China
3 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 7440KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纤维复合材料具有耐高温、耐摩擦、耐腐蚀等诸多优异性能,被广泛应用于航空航天、汽车制造等相关领域。鉴于碳纤维复合材料的广泛应用,制备碳纤维复合材料构件的自动铺放设备及技术也得到了快速发展。近年来,复合材料自动铺放技术也取得了非常显著的成绩。
碳纤维复合材料自动铺放技术的研究是铺放设备、铺放轨迹、铺放工艺及铺放软件技术的综合性研究。其中,研究人员将铺放头与纤维纱架结合实现了碳纤维复合材料铺放设备的一体式结构,为完全自动化铺放奠定了基础。碳纤维复合材料的铺放轨迹起初采用相对简单的定角度铺放,但是近些年变角度铺放成为研究热点,采用变角度铺放可以提升铺放构件的力学性能。另外,工作人员针对复合材料的铺放温度、铺放速度和铺放压力等铺放工艺进行了研究,实现了铺放工艺参数的优化并提高了铺放构件的成型质量。此外,在复合材料自动铺放软件技术的研究中,研究人员以铺放工艺及构件形体要求为基础,开发了与铺放设备相匹配的CAD/CAM软件系统,实现了复合材料的自动化、智能化铺放。
本文主要从自动铺放设备结构、纤维铺放轨迹规划与控制、铺放工艺参数优化和自动铺放软件系统几个方面对国内外自动铺放技术的研究进展进行了综述。基于自动铺放技术的发展现状,总结了国内自动铺放技术存在的问题,并对国内自动铺放技术的发展方向进行了探讨。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹忠亮
郭登科
林国军
胡清明
富宏亚
关键词:  复合材料  纤维铺放  结构设计  铺放工艺  软件系统    
Abstract: Carbon fiber composite materials have many excellent properties such as high temperature resistance, friction resistance and corrosion resistance, which are widely used in aerospace, automatic manufacturing and other related fields. In view of the wide application of carbon fiber composite materials, automated placement equipment and technology for preparing carbon fiber composite materials have also been rapidly developed. In recent years, remarkable achievements have been made in the field of automated placement of composite materials.
The research on automated placement technology of carbon fiber composite materials is a comprehensive study of placement equipment, placement trajectory, placement technology and placement software technology. Among them, the researchers combined the placement head with the fiber creel to realize the integrated structure of the carbon fiber composite placement equipment, which provides the basis for fully automated placement. At first, the placement trajectory of carbon fiber composite materials used relatively simple fixed-angle placement, but in recent years, variable-angle placement has become a research focus, which can improve the mechanical properties of placement components. In addition, the researchers studied the placement process of composite materials, such as placement temperature, placement speed and placement pressure, realized the optimization of placement process parameters and improved the forming quality of placement components. In addition, in the research of composite material automated placement software technology, based on the placement process and component shape requirements, the researchers developed a CAD/CAM software system matching the placement equipment to realize the automation and intelligence placement of composite materials.
This paper reviews the research progress of automated placement technology at home and abroad focusing on the structural applicability of automated placement equipment, fiber placement trajectory planning and control, optimization of placement process parameters and automated placement software systems. Based on the development status of composite automated placement technology, the existing problems of composite automated placement technology in China are summarized, and the development trend direction of composite automated placement technology is discussed.
Key words:  composite materials    fiber placement    structural design    placement process    software system
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TB332  
基金资助: 国家自然科学基金项目(51705266);国家数控专项支持项目(2014ZX04001091);黑龙江省自然科学基金项目(QC2018072);黑龙江省普通本科高等学校青年创新人才培养计划(Untysct-2017156)
通讯作者:  caoliang-8302@163.com   
作者简介: 
曹忠亮,江苏理工学院机械工程学院副教授,2010年7月获得哈尔滨工业大学机械电子工程专业硕士学位,2019年7月获得哈尔滨工业大学机械制造及其自动化专业博士学位。主持国家自然科学基金青年项目一项、黑龙江省自然基金青年项目一项,参与省级以上自然科学基金项目两项,主持市厅级项目三项。目前主要研究领域为复合材料铺放成型工艺、变角度轨迹规划、CAD/CAM等,发表期刊论文二十余篇,授权专利六项。
引用本文:    
曹忠亮, 郭登科, 林国军, 胡清明, 富宏亚. 碳纤维复合材料自动铺放关键技术的现状与发展趋势[J]. 材料导报, 2021, 35(21): 21185-21194.
CAO Zhongliang,GUO Dengke,LIN Guojun,HU Qingming,FU Hongya. Current Situation and Development Trend of Key Technologies for Automated Placement of Carbon Fiber Composites. Materials Reports, 2021, 35(21): 21185-21194.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040206  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21185
1 Zhao X, Zhu J J, Li M,et al. Materials Reports, 2016, 30(S1), 525 (in Chinese).
赵欣, 朱健健, 李梦, 等. 材料导报, 2016, 30(S1), 525.
2 Du S Y.Acta Materiae Compositae Sinica, 2007, 24(1), 1 (in Chinese).
杜善义. 复合材料学报, 2007, 24(1), 1.
3 Mair R I.Composite Structures, 2002, 57(1), 231.
4 Zhang X H, Zhu Y X, Zhang S Q,et al. Aeronautical Manufacturing Technology, 2018, 61(7), 54 (in Chinese).
张小辉, 朱玉祥, 张少秋, 等. 航空制造技术, 2018, 61(7), 54.
5 Chen X, Wang Y X, Li D,et al. Journal of Xi'an Polytechnic University, 2013, 27(2), 215 (in Chinese).
陈旭, 王益轩, 李端, 等. 西安工程大学学报, 2013, 27(2), 215.
6 Cao Z L, Fu H Y, Fu Y Z, et al. Materials Reports A:Review Papers, 2019, 33(3), 894 (in Chinese).
曹忠亮, 富宏亚, 付云忠, 等. 材料导报:综述篇, 2019, 33(3), 894.
7 Li Y, Xiao J. Fiber Composites, 2002(3), 39 (in Chinese).
李勇, 肖军. 纤维复合材料, 2002(3), 39.
8 Qin Y J, Han J P, Zhao K.Fiber Reinforced Plastics/Composites, 2019(5), 116 (in Chinese).
秦滢杰, 韩建平, 赵凯. 玻璃钢/复合材料, 2019(5), 116.
9 Qureshi Z, Swait T, Scaife R, et al. Composites Part B, 2014, 66, 117.
10 Heider D, Piovoso M J, John W, et al. Composites Part A: Applied Science and Manufacturing, 2003, 34(8), 261.
11 Shi Y Y, Yan L,Yang K P.Aeronautical Manufacturing Technology, 2010, 17(6), 32 (in Chinese).
史耀耀, 阎龙, 杨开平. 航空制造技术, 2010, 17(6), 32.
12 Shirinzadeh B, Wei F C, Hui T B.Assembly Automation, 2000, 20(4), 313.
13 Xiao J, Li Y, Li J L. Aeronautical Manufacturing Technology, 2008(1), 50 (in Chinese).
肖军, 李勇, 李建龙. 航空制造技术, 2008(1), 50.
14 Chen Y L.Aviation Maintenance & Engineering, 2005(3), 31 (in Chinese).
陈亚莉. 航空维修与工程, 2005(3), 31.
15 Ahrens M, Mallick V, Parfrey K. Industrial Robot, 1998, 25(5), 326.
16 Wang X F, Yan B, Xue K,et al. Aeronautical Manufacturing Technology, 2019, 62(16), 14 (in Chinese).
王显峰, 严飙, 薛柯, 等. 航空制造技术, 2019, 62(16), 14.
17 Zhang X, Shen Z.China Textile Leader, 2018(S1), 72 (in Chinese).
张璇, 沈真. 纺织导报, 2018(S1), 72.
18 Wei H H.Machine Design and Manufacturing Engineering, 2014, 43(7), 12 (in Chinese).
卫汉华. 机械设计与制造工程, 2014, 43(7), 12.
19 Zheng G Q.China Aviation News, 2017, 6(7), 14 (in Chinese).
郑广强. 中国航空报, 2017, 6(7), 14.
20 Sorrentino L, Carrino L,Tersigni L, et al. Journal of Manufacturing Science and Engineering, 2009, 131(4), 41.
21 Zhang L, Wang X P, Pei J Y, et al. Journal of Materials Science, 2020, 55(9),7121.
22 Xiao H Y, Zhu M, Li S J.Shangdong Chemical Industry, 2018, 47,32 (in Chinese).
肖横洋, 朱敏, 李双江. 山东化工, 2018, 47, 32.
23 Liu Y W.http://mp.of week.com/security/a445673121796.
24 Yan C, Chen P.Fiber Reinforced Plastics/Composites, 2017(11), 101(in Chinese).
闫超, 陈萍. 玻璃钢/复合材料, 2017(11), 101.
25 Cai Z Q, Xiao J, Wen L W, et al. Journal of Aeronautical Materials, 2017, 37(2), 21 (in Chinese).
蔡志强, 肖军, 文立伟, 等. 航空材料学报, 2017, 37(2), 21.
26 Cai J G, Yu B F, Yang Z Z,et al. Fiber Reinforced Plastics/Composites, 2014(9), 42 (in Chinese).
蔡金刚, 于柏峰, 杨志忠, 等. 玻璃钢/复合材料, 2014(9), 42.
27 Xiao J, Zhang J B, Li Y,et al. Aeronautical Manufacturing Technology, 2008(S1), 126 (in Chinese).
肖军, 张建宝, 李勇, 等. 航空制造技术, 2008(S1), 126.
28 Duan Y G, Liu F F, Chen Y,et al. Acta Materiae Compositae Sinica, 2012, 29(4), 148 (in Chinese).
段玉岗, 刘芬芬, 陈耀, 等. 复合材料学报, 2012, 29(4),148.
29 Duan Y G, Yan X F, Li C,et al. Acta Aeronautica et Astronautica Sinica, 2014, 35(4), 1173 (in Chinese).
段玉岗, 闫晓丰, 李超, 等. 航空学报, 2014, 35(4), 1173.
30 Li J J, Duan Y G, Gao K, et al. Transducer and Microsystem Technologies, 2015, 34(9), 20 (in Chinese).
李金键, 段玉岗, 高侃, 等. 传感器与微系统, 2015, 34(9), 20.
31 Han Z Y, Song G J, Fu H Y.Fiber Reinforced Plastics/Composites, 2010(4), 14 (in Chinese).
韩振宇, 宋光吉, 富宏亚. 玻璃钢/复合材料, 2010(4), 14.
32 Han Z Y, Wang Z B, Lu H, et al. Fiber Reinforced Plastics/Composites, 2014(5), 4 (in Chinese).
韩振宇, 王志斌, 路华, 等. 玻璃钢/复合材料, 2014(5), 4.
33 Wang L. Research on integration technique of creels and fiber placement head for automated fiber placement machine. Master's Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
王磊. 纱架与铺丝头一体化纤维铺放系统研究. 硕士学位论文, 哈尔滨工业大学,2015.
34 Zhao Y X. Research on robotic placement machine and placement process of thermoplastic composite. Master's Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
赵尧旭. 热塑性复合材料机器人铺放设备及工艺研究. 硕士学位论文, 哈尔滨工业大学, 2019.
35 Wang H Q, Su G R, Zheng W,et al. Intelligent Manufacturing, 2018(11), 47 (in Chinese).
王华侨, 苏国荣, 郑武, 等. 智能制造, 2018(11), 47.
36 Ge X F.China Mechanical Engineering, 2013, 24(12), 1591 (in Chinese).
葛新锋. 中国机械工程, 2013, 24(12), 1591.
37 Yin Z F, Li W Z, Li R H,et al. Journal of Henan Polytechnic University, 2018(6), 118 (in Chinese).
殷志锋, 栗伟周, 李瑞华, 等. 河南理工大学学报, 2018(6), 118.
38 吴保林, 贾立好, 徐德. 中国专利, CN201410432382.5, 2015-03-04.
39 吴保林, 贾立好, 徐德. 中国专利, CN201410433122.X, 2015-02-04.
40 肖晓晖, 刘胜, 段宝阁, 等. 中国专利, CN110733190A, 2020-01-31.
41 Tian H F, Yu J J, Chen P.Fiber Reinforced Plastics/Composites, 2018(4), 98 (in Chinese).
田会方, 余江江, 陈培. 玻璃钢/复合材料, 2018(4), 98.
42 Zhao J X, Sun C X, Li C H.Manufacturing Technology & Machine Tool, 2016(6), 62 (in Chinese).
赵金鑫, 孙彩霞, 李初晔. 制造技术与机床, 2016(6), 62.
43 Li C H, Feng C Z, Ma Z T,et al. Manufacturing Technology & Machine Tool, 2018(11), 106 (in Chinese).
李初晔, 冯长征, 马志涛, 等. 制造技术与机床, 2018(11), 106.
44 Hyer M, Charette R. In: Proceedings of the 30th AIAA/ASME/ASCE Structures. Netherlands, 1989.
45 Gürdal Z, Olmedo R. AIAA Journal, 1993, 31(4), 751.
46 Zafer G, Brian F, Tatting B. In: Proceedings of the 46th Structural Dynamics & Materials Conference. American, 2005, pp. 321.
47 Setoodeh S, Blom A, Abdalla M, et al. In: Collection of Structural Dynamics and Materials Conference. Japan, 2006, pp. 40.
48 Alhajahmad A, Abdalla M, Gurdal Z. Journal of Aircraft, 2008, 45(8), 630.
49 Parnas L, Oral S, Ceyhan U. Composites Science and Technology, 2003, 63(12), 1071.
50 Byung C, Kevin P, Paul M. Composites Part A: Applied Science and Ma-nufacturing, 2012, 43, 1347.
51 Bijan S, Chee W, Boon H. Assembly Automation, 2000, 20(12), 313.
52 Nagendra S, Kodiyalam S, Davis J, et al. In: Collection of Structural Dynamics and Materials Conference. England, 1995, pp. 1031.
53 Schmidt C, Hocke T, Denkena B. Production Engineering, 2019, 17, 798.
54 Oromiehie E, Gangadhara P B, Compston P, et al. Advanced Manufacturing: Polymer & Composites Science, 2017, 3(2), 52.
55 Schmidt C, Denkena B, Völtzer K, et al. Procedia CIRP, 2017, 62, 641.
56 He K, Nie H, Yan C. Procedia CIRP, 2016, 56(24), 610.
57 Yan B, Wen L W, Xiao J, et al. Aeronautical Manufacturing Technology, 2012, 18(7), 53 (in Chinese).
严飙, 文立伟, 肖军, 等. 航空制造技术, 2012, 18(7), 53.
58 Wang X F, Ye Z H, Wang R Z, et al. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(3), 539.
59 Zhang X M, Xie W F,Suong V, et al. Robotics and Computer Integrated Manufacturing, 2018, 51, 319.
60 Wen L W, Li J F, Wang X F, et al. Acta Aeronautica et Astronautica Sinica, 2013, 34(7), 1731 (in Chinese).
文立伟, 李俊斐, 王显峰, 等. 航空学报, 2013, 34(7), 1731.
61 Wu C J, Zu L, Li S X, et al. Fiber Reinforced Plastics/Composites, 2018(4), 5 (in Chinese).
吴尘瑾, 祖磊, 李书欣, 等. 玻璃钢/复合材料, 2018(4), 5.
62 Duan Y G, Dong X W, Ge Y M, et al. Acta Aeronautica et Astronautica Sinica, 2014,35(9), 2632 (in Chinese).
段玉岗, 董肖伟, 葛衍明, 等. 航空学报, 2014, 35(9), 2632.
63 Duan Y G, Ge Y M, Meng Y, et al. Acta Aeronautica et Astronautica Sinica, 2015, 36(10), 3475 (in Chinese).
段玉岗, 葛衍明, 孟洋, 等. 航空学报, 2015, 36(10), 3475.
64 Luo H Y, Li Y, Xiao J, et al. Acta Aeronautica et Astronautica Sinica, 2009, 30(9), 1782(in Chinese).
罗海燕, 李勇, 肖军, 等. 航空学报, 2009, 30(9), 1782.
65 Zhu Y J, Luo W L.Mechatronics, 2013,19(5), 13 (in Chinese).
朱延娟, 罗文龙. 机电一体化, 2013, 19(5), 13.
66 Ren W A, Ma J,Yang Q Q,et al. Aeronautical Manufacturing Technology, 2020, 63(9), 89 (in Chinese).
任卫安, 马军, 杨倩倩, 等. 航空制造技术, 2020, 63(9), 89.
67 Sonmez F O, Akbulut M.Composites Part A, 2007, 38(9), 429.
68 Shi Q, Qi H, Wang T J. Scientia Sinica(Technologica), 2019, 49(10), 1121 (in Chinese).
施前, 齐航, 王铁军. 中国科学:技术科学, 2019, 49(10), 1121.
69 Li S J, Zhan L H, Peng W F, et al. Rare Metal Materials and Enginee-ring, 2015, 44(11), 2927 (in Chinese).
李树健, 湛利华, 彭文飞, 等. 稀有金属材料与工程, 2015, 44(11), 2927.
70 Sarrazin H, Springer G S. Journal of Composite Materials, 1995, 29(14), 1908.
71 Dubois O, Cam J B L, Béakou A. Experimental Mechanics, 2010, 50(5), 599.
72 Bogetti T A , Gillespie J W . Journal of Composite Materials, 1992, 26(5), 68.
73 Min R, Yuan Z Y, Wang Y J, et al. Acta Materiae Compositae Sinica, 2017(10), 32 (in Chinese).
闵荣, 元振毅, 王永军, 等. 复合材料学报, 2017(10), 32.
74 Zhao C, Xiao J, Wang X F, et al. Acta Aeronautica et Astronautica Sinica, 2016,37(4), 1384 (in Chinese).
赵聪, 肖军, 王显峰, 等. 航空学报, 2016, 37(4), 1384.
75 Huang W Z. Processing parameter analysis and optimization of automated tape laying for thermosetting prepregs. Master's Thesis, Huazhong University of Science and Technology, China, 2013 (in Chinese).
黄文宗. 热固性预浸料的自动铺带工艺参数分析与优化. 硕士学位论文, 华中科技大学, 2013.
76 Huang X J, Xiao J, Zhao C, et al. Fiber Glass, 2015(6), 20 (in Chinese).
黄新杰, 肖军, 赵聪, 等. 玻璃纤维, 2015(6), 20.
77 Song Q H,Wen L W, Yan B, et al. Aeronautical Manufacturing Technology, 2011(15), 42 (in Chinese).
宋清华, 文立伟, 严飙,等. 航空制造技术, 2011(15), 42.
78 Chen J P, Li Y, Liu W P,et al. Acta Materiae Compositae Sinica, 2019, 36(4), 784 (in Chinese).
陈吉平, 李岩, 刘卫平, 等. 复合材料学报, 2019, 36(4), 784.
79 Di P, Compston P. Advanced Composite Letters, 2011, 2, 45.
80 Guan X, Pitchumani R. Composites Science and Technology, 2004, 64, 1363.
81 Guan X, Pitchumani R. Composites Science and Technology, 2005, 32, 1123.
82 Fazil O, Sonmez A. Composites Part A: Applied Science and Manufactu-ring, 2007, 38, 2013.
83 Christopher M, Paul C, Timothy H, et al. Journal of Thermoplastic Composite Materials, 2013, 11, 1.
84 Stokes G, Compston P. Composites Part A:Applied Science and Manufacturing, 2015, 78, 273.
85 Aized T, Shirinzadeh B. The International Journal of Advanced Manufacturing Technology, 2011, 55(4), 393.
86 Sonmez F O, Akbulut M. Composites Part A, 2007, 38(9), 169.
87 Pitchumani R, Ranganathan S, Don R C, et al. International Journal of Heat & Mass Transfer, 1996, 39(9), 1883.
88 Song Q H, Liu W P, Xiao J,et al. Acta Materiae Compositae Sinica, 2018, 35(5), 1149 (in Chinese).
宋清华, 刘卫平, 肖军, 等. 复合材料学报, 2018, 35(5), 1149.
89 Song Q H, Xiao J, Wen L W, et al. Journal of Materials Engineering, 2018, 46(1), 83 (in Chinese).
宋清华, 肖军, 文立伟, 等. 材料工程, 2018, 46(1), 83.
90 Li J, Wang C C, Kang S F, et al. In: The 3rd China International Composite Materials Technology Conference. Hangzhou, China, 2017, pp. 453(in Chinese).
李进, 王长春, 康少付, 等. 第三届中国国际复合材料科技大会. 杭州, 2017, pp.453.
91 Xue Q G. Aeronautical Manufacturing Technology, 2008(4), 53 (in Chinese).
薛企刚. 航空制造技术, 2008(4), 53.
92 Hale R D, Moon R S, Lim K, et al. Integrated design and analysis tools for reduced weight, affordable fiber steered composites. University of Kansas, USA, 2004.
93 Huan D J, Xiao J, Li Y. Aeronautical Manufacturing Technology, 2010(17), 42 (in Chinese).
还大军, 肖军, 李勇. 航空制造技术, 2010(17), 42.
94 Zeng W. Research on trajectory generation & coverability analysis of automated fiber placement. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2010 (in Chinese).
曾伟. 复合材料自动铺丝轨迹规划与覆盖性分析研究. 硕士学位论文, 南京航空航天大学, 2010.
95 Huan D J. Fundamental research on CAD/CAM technology of composite material automated placement. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2010 (in Chinese).
还大军. 复合材料自动铺放CAD/CAM关键技术研究. 硕士学位论文, 南京航空航天大学, 2010.
96 Zhao Z L. Research on structure improvement and CAM technology of ty-pical auromated placement system. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2011 (in Chinese).
赵增林. 典型自动铺放系统的机构改进及CAM技术研究. 硕士学位论文, 南京航空航天大学, 2011.
[1] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[2] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[3] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[4] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[5] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[6] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[7] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[8] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[9] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[10] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[11] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[12] 武海鹏. 复合材料层合板阻尼性能的预测与分析[J]. 材料导报, 2021, 35(Z1): 617-620.
[13] 李磊, 刘晓莲, 王利媛, 康卫民, 庄旭品. 无机相拓扑结构对有机-无机复合质子交换膜性能的影响综述[J]. 材料导报, 2021, 35(Z1): 621-627.
[14] 谢贵堂, 张均, 姚明, 王宇川, 蒋国昌, 姜志国. 调湿材料的研究与应用现状[J]. 材料导报, 2021, 35(Z1): 634-638.
[15] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed