Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21178-21184    https://doi.org/10.11896/cldb.20050245
  无机非金属及其复合材料 |
地热井系统腐蚀与防护的研究进展
邓嵩, 沈鑫, 刘璐, 凌定坤, 赵会军
常州大学石油工程学院,常州 213000
Research Progress in Corrosion and Protection of Geothermal Well System
DENG Song, SHEN Xin, LIU Lu, LING Dingkun, ZHAO Huijun
College of Petroleum Engineering, Changzhou University,Changzhou 213000, China
下载:  全 文 ( PDF ) ( 4907KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地热能具有成本低、分布广、污染低、可再生等特点,因此被认为比化石燃料能源更环保。地热井系统在地热工业中得到了广泛的应用,因为它有助于地热资源的大规模利用。然而,地热井系统(主要包括井口装置、井下套管等设施)在服役过程中长期暴露在对金属具有腐蚀性的地热流体中,这会缩短地热井的使用寿命。因此,研究地热井系统的腐蚀问题具有重要的科学和工程价值。
受到地理、地质条件、热储层条件的影响,不同地区的地热流体差异性较大,且地热井井下条件复杂,系统中的腐蚀种类多样,这些因素给地热井系统腐蚀机理及防护技术的研究带来了挑战。
地热井系统中的腐蚀类型主要分为全面腐蚀和局部腐蚀,全面腐蚀包括二氧化碳(CO2)腐蚀和硫化氢(H2S)腐蚀;局部腐蚀包括点蚀、沉积腐蚀、双金属腐蚀、冲刷腐蚀、应力腐蚀、氢脆、晶间腐蚀等。为了对井下腐蚀情况进行检查,石油工业中常采用的机械井径测量技术、井下视像检测系统、超声波测厚技术等测井技术已在地热井中得到了应用。实验研究中,重量法、电阻法、电化学方法以及表面分析技术等近年来都获得了广泛的应用,其中,电阻法和电化学方法更多用于现场实验中地面工作设备的腐蚀监测,而井下实验则因为难以安装腐蚀探针,通常只采用重量法和表面分析法;室内实验则通过不同种类的高温高压反应釜来还原材料在地热环境中服役的真实状况。在防腐技术方面,开发耐蚀材料(不锈钢、钛合金、镍合金等)、附加防腐层都是常用的手段和今后重点研究的对象,绿色缓蚀剂也是目前研究的热点,而阴极保护技术的研究在地热领域尚处于起步阶段,具有较大的发展空间。
本文首先总结了地热井系统中的腐蚀类型和机理,介绍了主流的地热井井下腐蚀检查技术并讨论了这些技术各自的优势和缺陷,归纳了实验研究的主要类型和手段,指出了目前存在的问题,并对现有的防腐技术进行了探讨。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓嵩
沈鑫
刘璐
凌定坤
赵会军
关键词:  地热井  腐蚀  再生能源    
Abstract: Compared with fossil fuel energy, geothermal energy is an environmentally-friendly renewable energy with low cost, wide distribution and low pollution. Therefore, the geothermal well system has been widely used in the geothermal industry. However, the geothermal well systems (mainly including wellhead equipment, downhole casing and other facilities) are exposed to geothermal fluids that are corrosive to metals for a long time, which will shorten the production life of geothermal wells. Therefore, it is of great scientific and engineering value to study the corrosion in geothermal well system.
Due to the influence of geographical location, geological and thermal reservoir conditions, combined with different geothermal fluids in different regions and complex downhole condition, there are various types of corrosion in the geothermal wells. All these factors will pose challenges to study the corrosion mechanism and protection technique of the geothermal well system.
The corrosion in geothermal well systems can be divided into two types, i.e. general corrosion and local corrosion. The former includes the carbon dioxide (CO2) corrosion and hydrogen sulfide (H2S) corrosion; while the latter includes the pitting corrosion, deposition corrosion, bimetallic corrosion, erosion corrosion, stress corrosion, hydrogen embrittlement, intergranular corrosion, etc. In order to inspect downhole corrosion, logging technologies such as mechanical caliper measurement technology, downhole visual inspection system, and ultrasonic thickness measurement technology used in the petroleum industry have been applied to geothermal wells. The gravimetric method, resistance method, electrochemical method and surface analysis technology have been widely used in previous experimental research, among which resistance method and electrochemical method are used for the corrosion monitoring of ground working equipment in field experiment; to carry out downhole experiment, the gravimetric and surface analysis is conducted because of the difficulty in installing corrosion probes; different types of high-temperature and high-pressure reactors are used in indoor experiments to reflect the material performance in real geothermal condition. In terms of anti-corrosion technology, the development of anti-corrosion materials (stainless steel, titanium alloy, nickel alloy, etc.) and additional anti-corrosion coatings are commonly used methods, meanwhile they will also be the research focus. Besides, the research on green corrosion inhibitors is highlighted, while there are great potential for the study on the cathodic protection in geothermal field.
This paper firstly summarizes the corrosion types and mechanism in gerthermal well, followed by an introduction of the major underground corrosion inspection techniques as well as their advantages and disadvantages, and then the main types and means of experimental research and existing problems are discussed. To conclude, the existing anti-corrosion technology are explored.
Key words:  geothermal well    corrosion    renewable energy
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TK529  
基金资助: 江苏省自然科学基金(BK20180959);常州市应用基础研究计划(CJ20190060);国家重点研发计划(2019YFB1504201)
通讯作者:  cczuzhj.geo@foxmail.com   
作者简介:  邓嵩,常州大学石油工程学院副教授。2010年6月毕业于中国石油大学(北京)石油工程学院,获得工学学士学位。2017年7月取得中国石油大学(北京)石油工程学院油气井工程专业博士学位。主要从事能源开发新材料、油气井人工智能等方面的研究工作。
赵会军,常州大学石油工程学院教授、硕士研究生导师。1985年7月本科毕业于抚顺石油学院(现辽宁石油石化工程大学),取得工程学士学位。1985年9月—1988年6月,就读于中国石油大学(北京)石油机械专业,取得硕士学位。2008年8月取得中国石油大学(华东)油气储运工程学科博士学位。主要从事油气管输运技术、油气田地面工程等方面的研究工作,发表学术论文80余篇,主编教材3部。
引用本文:    
邓嵩, 沈鑫, 刘璐, 凌定坤, 赵会军. 地热井系统腐蚀与防护的研究进展[J]. 材料导报, 2021, 35(21): 21178-21184.
DENG Song, SHEN Xin, LIU Lu, LING Dingkun, ZHAO Huijun. Research Progress in Corrosion and Protection of Geothermal Well System. Materials Reports, 2021, 35(21): 21178-21184.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050245  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21178
1 Zheng K Y, Pan X P, Ma F J, et al. Geothermal utilization technology, China Electric Power Press, China, 2015 (in Chinese).
郑克棪, 潘小平, 马风景, 等. 地热利用技术, 中国电力出版社, 2015.
2 Plaksina T, White C.Geothermal Energy, 2016, 4(1), 2.
3 Mundhenk N, Huttenloch P, Sanjuan B, et al.Corrosion Science, 2013, 70, 17.
4 Karlsdóttir S N, Jonsson T, Stefánsson A. In: NACE Corrsion 2017. New Orleans, Louisiana, USA, 2017, pp. 12.
5 Nogara J, Zarrouk S J. Renewable and Sustainable Energy Reviews, 2018, 82, 1333.
6 Phi T, Elgaddafi R, Al Ramadan M, et al. In: SPE Thermal Well Integrity and Design Symposium. Banff, Alberta, Canada, 2019, pp. 28.
7 Lukawski M Z, Silverman R L, Tester J W.Geothermics, 2016, 64, 382.
8 Bozau E, Häußler S, Van Berk W.Geothermics, 2015, 53, 540.
9 Klapper H S, Stevens J, Wiese G.Corrosion, 2013, 69(11), 1095.
10 Zhao D, Li G F, Ji K Q, et al. Corrosion & Protection, 2020, 41(1), 1(in Chinese).
赵迪, 李光福, 纪开强, 等.腐蚀与防护, 2020, 41(1), 1.
11 Tjelta M, Sæther S, Krogh B C, et al. In: NACE Corrosion 2019. Nashville, Tennessee, USA, 2019, pp. 15.
12 Pei Y D, Duan C Y, Zheng X H, et al.Advances in New and Renewable Energy, 2019, 7(6), 487(in Chinese).
裴亚东, 段晨阳, 郑秀华, 等. 新能源进展, 2019, 7(6), 487.
13 Li Y M, Pang Z H.Advances in New and Renewable Energy, 2018, 6(4), 274(in Chinese).
李义曼, 庞忠和.新能源进展, 2018, 6(4), 274.
14 Amero J, Zarrouk S J, Mroczek E.Geothermics, 2018, 72, 1.
15 Wang Y X, Liu S L, Bian Q Y, et al.Advances in New and Renewable Energy, 2015, 3(3), 202(in Chinese).
王延欣, 刘世良, 边庆玉, 等.新能源进展, 2015, 3(3), 202.
16 Wanner C, Eichinger F, Jahrfeld T, et al.Procedia Earth and Planetary Science, 2017, 17, 344.
17 Feng B, Song D, Fu L, et al.Natural Gas Industry, 2019, 39(7), 133(in Chinese).
冯波, 宋丹, 付雷, 等.天然气工业, 2019, 39(7), 133.
18 Thomas R. Geothermics, 2003, 32(4-6), 679.
19 Zhang G A, Yu N, Yang L Y, et al. Corrosion Science, 2014, 86, 202.
20 Han X, Yang J, Wang Z M, et al. Corrosion & Protection, 2020, 41(2), 14(in Chinese).
韩霞, 杨军, 王子明, 等. 腐蚀与防护, 2020, 41(2), 14.
21 Liu Y, Liu X, Zhang Z, et al.Corrosion Science, 2019, 161, 108185.
22 Sampedro J A, Rosas N, Díaz R, et al.Heat Recovery Systems & CHP, 1988, 8(4), 355.
23 Li J, Sun C, Shuang S, et al. Journal of Petroleum Science and Enginee-ring, 2019, 182, 106325.
24 Karafyllias G, Galloway A, Humphries E.Wear, 2019, 420-421, 79.
25 Csaki I, Ragnasdottir K R, Buzaianu A, et al.Surface and Coatings Technology, 2018, 350, 531.
26 Islam M A, Farhat Z.Wear, 2017, 376-377, 533.
27 Wu Y.Exploration Engineering Media, 2006(12), 45(in Chinese).
吴烨.探矿工程(岩土钻掘工程), 2006(12), 45.
28 Culivicchi G, Palmerini C, Scolari V.Geothermics, 1985, 14(1), 73-90.
29 Karlsdottir S N, Thorbjornsson I O. In: NACE Corrosion 2012. Salt Lake City, Utah, 2012, pp. 18.
30 Karlsdottir S N, Thorbjornsson I O. In: NACE Corrosion 2013. Orlando, Florida USA, 2013, pp. 2550.
31 Bocchi S, Cabrini M, D'urso G, et al.Engineering Failure Analysis, 2020, 111, 104483.
32 Sampedro J, Rosas N, Díaz R, et al.Heat Recovery Systems and CHP, 1988, 8(4), 355.
33 Nie C, Chen X H, Tao Y L, et al.Corrosion & Protection, 2013, 34(9), 856(in Chinese).
聂畅, 陈小红, 陶玉林, 等.腐蚀与防护, 2013, 34(9), 856.
34 Han J. Corrosion behavior of Q235 and pipeline steel in geothermal water of Tianjin. Master's Thesis, Tianjin University, China, 2010(in Chinese).
韩静. Q235和管道钢在天津地热水中的腐蚀性能研究. 硕士学位论文, 天津大学, 2010.
35 Dai J C, Guo H M, Fang W, et al.Journal of Oil and Gas Technology, 2005, 27(1), 59(in Chinese).
戴家才, 郭海敏, 方伟, 等.石油天然气学报(江汉石油学院学报), 2005, 27(1), 59.
36 Li G, Zhu G L, Wang Y K, et al.Xinjiang Petroleum Geology, 2011, 32(2), 190(in Chinese).
李刚, 朱广亮, 王永康, 等. 新疆石油地质, 2011, 32(2), 190.
37 Ponce A S. In: Proceedings World Geothermal Congress. Reykjavik, Iceland, 2020, pp. 18.
38 Miao X Q.Chemical Enterprise Management, 2016(8), 196(in Chinese).
苗锡强.化工管理, 2016(8), 196.
39 Lu Y B. Exploration Engineering Media, 2004(8),49(in Chinese).
卢予北.探矿工程(岩土钻掘工程), 2004(8), 49.
40 Normann R C N, Henfling J. Geothermal Resources Council Transactions, 2016, 40, 957.
41 Tang Y H, Huang Y, Zou L. Mechanical Science and Technology for Aerospace Engineering, 2017,36(8), 1255(in Chinese).
唐玉恒,黄云,邹莱.机械科学与技术, 2017,36(8), 1255.
42 Hayman A J, Parent P, Rouault G, et al. In:1995 IEEE Ultrasonics Symposium. Seattle, WA, USA, 1995, pp. 1115.
43 Lichti K, White S P, Ko M, et al. In: Proceedings World Geothermal Congress. Bali, Indonesia, 2010, pp. 1.
44 Lichti K A, Julian R H. In: Proceedings World Geothermal Congress. Bali, Indonesia, 2010, pp. 1.
45 Zhu J L, Dong H H, Meng X J.Energiae Solaris Sinica, 2004, 25(5), 699(in Chinese).
朱家玲, 董海虹, 孟宪级.太阳能学报, 2004, 25(5), 699.
46 Thorhallsson A I, Stefansson A, Kovalov D, et al.Corrosion Science, 2020, 168, 108584.
47 Nogara J, Zarrouk S J.Renewable and Sustainable Energy Reviews, 2018, 82, 1347.
48 Zhou Y Z, Xin S Y, Lei X. China Petroleum Machinery, 2017, 45(12), 106(in Chinese).
周远喆, 信石玉, 类歆.石油机械, 2017, 45(12), 106.
49 Kurata Y, Sanada N, Nanjo H, et al. In: Proceedings of the 14th New Zealand Geothermal Workshop. New Zealand, 1992, pp. 159.
50 Kurata Y, Sanada N, Nanjo H,et al. In: Geothermal Resources Council. Davis, CA, United States, 1995, pp. 604.
51 Faes W, Lecompte S, Van Bael J, et al.Geothermics, 2019, 82, 182.
52 Karlsdottir S N, Thorbjornsson I O, Ragnarsdottir K R, et al. In: NACE Corrosion 2014. San Antonio, Texas, USA, 2014, pp. 15.
53 Fujisawa R, Nishimura K, Nishida T, et al. In: NACE Corrosion 2005. Houston, Texas, USA, 2005, pp. 10.
54 Ragnarsdottir K R, Karlsdottir S N, Leosson K, et al. In: NACE Corrosion 2017. New Orleans, Louisiana, USA, 2017,pp. 14.
55 Cai Y W, Quan X J.Surface Technology, 2018, 47(6), 232(in Chinese).
蔡永伟, 全学军.表面技术, 2018, 47(6), 232.
56 Zhang F, Liu M Y, Xu Y S H.CIESC Journal, 2016, 67(2), 627(in Chinese).
张帆, 刘明言, 徐杨书函.化工学报, 2016, 67(2), 627.
57 Zhang F, Liu M Y,Zhang S, et al. Energiae Solaris Sinica, 2015, 36(2), 510(in Chinese).
张帆, 刘明言, Zhang Shuai, 等. 太阳能学报, 2015, 36(2), 510.
58 Cheng Z F, Jin W Q, Ma C H, et al.Electroplating and Finishing, 2015, 34(21), 1211(in Chinese).
程子非, 金文倩, 马春红, 等.电镀与涂饰, 2015, 34(21), 1211.
59 Aristia G, Bäßler R, Roth C. In: NACE Corrosion 2018. Phoenix, Arizona, USA, 2018,pp. 10708.
60 Espartero J C, De Leon A C, Advincula R C. In: NACE Corrosion 2019. Nashville, Tennessee, USA, 2019, pp. 13514.
61 Ma J J, He T, Zhang C.Oil-Gas Field Surface Engineering, 2019, 38(S1), 131(in Chinese).
马建军, 何亭, 张闯.油气田地面工程, 2019, 38(S1), 131.
62 Li C F, Wang B, Dai J L, et al. Journal of Southwest Petroleum Institute, 2004(3), 56(in Chinese).
李春福, 王斌, 代家林, 等.西南石油学院学报, 2004(3), 56.
63 Buyuksagis A, Erol S.Journal of Materials Engineering and Performance, 2013, 22(2), 563.
64 Buyuksagis A, Dilek M, Kargioglu M, et al.Protection of Metals and Phy-sical Chemistry of Surfaces, 2015, 51(5), 861.
[1] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[2] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[3] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[4] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[5] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[6] 张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
[7] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[8] 曹诗瑶, 闫小琴. GaAs材料在光电化学电池中的稳定性[J]. 材料导报, 2021, 35(5): 5062-5066.
[9] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[10] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[11] 孙丽丽, 陈良源, 王勇, 张旭昀, 徐德奎. Zn-Cu-Ti合金的力学性能及腐蚀性能研究进展[J]. 材料导报, 2021, 35(3): 3152-3158.
[12] 李年华, 刘吉平, 韩佳, 刘晓波, 李雪利, 宋昆朋, 杨威威, 方祝青. 金属氘化物的制备与应用研究进展[J]. 材料导报, 2021, 35(21): 21211-21220.
[13] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[14] 杨帆, 丁建伟, 刘豪, 邱长军, 李胜. 液态GaIn合金对铜的腐蚀机理与防腐蚀技术研究[J]. 材料导报, 2021, 35(20): 20076-20080.
[15] 喻宣瑞, 姚国文, 范伟庆. 交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J]. 材料导报, 2021, 35(20): 20087-20091.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed