Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7099-7106    https://doi.org/10.11896/cldb.19030152
  无机非金属及其复合材料 |
公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的
国内外研究进展
白亚飞1,2, 王栋民1,2,3
1 中国矿业大学(北京)化学与环境工程学院,北京 100083;
2 中国矿业大学(北京)混凝土与环境材料研究所,北京 100083;
3 滨州学院山东省黄河三角洲生态环境重点实验室,滨州 256603
Domestic and Foreign Research Progress of Air-entraining Agents for Low-slump of Plastic Concrete and No-slump of Dry-hard Concrete Used in Highway Concrete
BAI Yafei1,2,WANG Dongmin1,2,3
1 School of Chemical & Environmental Engineering, China University of Ming & Technology, Beijing, Beijing 100083, China;
2 Institute of Concrete and Environmental Materials, China University of Ming & Technology, Beijing, Beijing 100083, China;
3 Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta,Binzhou University, Binzhou 256603, China
下载:  全 文 ( PDF ) ( 3306KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 引气剂作为一种能在混凝土拌合物的拌和过程中引入大量均匀分布的、闭合而稳定的微小气泡的外加剂,自被发现以来,一直受到国内外研究学者及同行的高度关注。其一方面能有效改善混凝土拌合物的和易性、保水性和粘聚性,提高混凝土的流动性;另一方面能极大提高混凝土的抗冻性、抗盐渍性、抗渗性、耐硫酸盐侵蚀及抗碱集料反应性能,有效降低混凝土的热扩散及传导系数,并且可以提高混凝土的体积稳定性,增强野外结构的耐候性,从而延长公路混凝土的使用寿命,提高公路混凝土的耐久性。引气剂主要用于抗冻性要求高的结构,如混凝土大坝、路面、桥面、飞机场道面等大面积易受冻的部位,具有非常广阔的研究和应用前景。
   然而,如今的引气剂,对于公路混凝土,尤其是低坍落度塑性混凝土和无坍落度干硬性混凝土,一直以来存在引气困难、引入气泡的起泡性差、稳泡性差、气泡直径较大以及气泡分布不均等难题,从而导致公路混凝土的工作性、抗冻性以及耐久性等性能较差。近年来,研究焦点主要基于如何有效解决引气剂引气难、引入气泡的起泡性差、稳泡性差、气泡直径较大以及气泡分布不均等问题而展开。
   目前已经基于松香树脂类、烷基和烷基芳烃磺酸类、脂肪醇磺酸盐类、皂苷类等原料进行了一定的研究。近年来国内外研究学者在以上原料的基础上,从分子结构设计角度出发,通过对分子进行有效改性,并引入一定量的特殊官能团,对引气剂在公路混凝土中所存在的问题进行了探索并取得了一定进展。
   本文以全新的视角讨论了公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的定义和种类及其评价方法,重点阐述了公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的国内外研究进展。从分子类型、合成、设计、模型等角度解析了公路混凝土用引气剂的研究进展,综合评述了公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂在工作性、抗冻性与耐久性等方面的研究状况,提出两种“理想”引气剂分子结构模型。本文有助于理解公路混凝土用引气剂对低坍落度塑性混凝土和无坍落度干硬性混凝土的作用规律,并指导更好地设计开发出新型公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白亚飞
王栋民
关键词:  公路  混凝土  引气剂  低坍落度  无坍落度  工作性  抗冻性  耐久性    
Abstract: Air entraining agent, as an admixture capable of introducing a large number of evenly distributed, closed and stable microbubbles in the mixing process of concrete mixture, has been highly concerned by researchers and peers at home and abroad since its discovery. Because on the one hand, it can effectively improve the workability, water retention and cohesiveness of concrete mixture, and improve the fluidity of concrete; on the other hand, it can greatly improve the frost resistance, salt resistance, impermeability, sulfate corrosion and alkali-resistant aggregate reaction performance of concrete, effectively reduce the thermal diffusion and conductivity of concrete, and can improve the volume stability of concrete, enhance the weather resistance of field structures, thereby prolonging the service life of highway concrete and improving durability of highway concrete. The air entraining agent is mainly used for structures with high frost resistance requirements, such as concrete dams, pavements, bridge decks, airport road surfaces and other large areas that are susceptible to freezing, and has a very broad research and application prospect.
However, today’s air entraining agents, for highway concrete, especially low-slump of plastic concrete and non-slump of dry-hard concrete, have always had difficulty in ventilating, poor foaming of introduced bubbles, poor foam stability, and air bubbles. The problems of large diameter and uneven distribution of bubbles lead to serious problems such as poor workability, frost resistance and durability of highway concrete. In recent years, the focus of research has been based on how to effectively solve the problem of air entrainment dynamometer, poor foaming of introduced bubbles, poor bubble stability, large bubble diameter, and uneven bubble distribution.
At present, research has been carried out on raw materials such as rosin resins, alkyl and alkyl arene sulfonic acids, fatty alcohol sulfonates, sapiens, etc., and in recent years, researchers at home and abroad have based on the above raw materials, from the perspective of structural design, through the effective modification of molecules and the introduction of a certain amount of special functional groups, which have made some exploration and progress on the problems of air entraining agents in highway concrete.
This paper discusses the definitions and types of air-entraining agents about low-slump of plastic concrete and no-slump of dry-hard concrete used in highway concrete and its evaluation methods from a new perspective, focusing on the domestic and foreign research progress of air-entraining agents about low-slump of plastic concrete and non-slump of dry-hard concrete used in highway concrete. And the latest research progress of air-entraining agents in highway concrete is analyzed from the new perspectives of molecular type, synthesis, design, model and so on, and a comprehensive review of the research status of low-slump of plastic concrete and non-slump of dry-hard concrete for highway concrete in terms of workability, frost resistance and durability, and two “ideal” air entraining agent molecular structure models are proposed based on our research results. It is helpful to understand the effect of air entraining agent for highway concrete on low-slump plastic and no-slump of dry-hard concrete, and better designs directly and develops a new air entraining agent used in low-slump of plastic concrete and no-slump of dry-hard concrete in highway concrete.
Key words:  highway    concrete    air entraining agent    low-slump    no-slump    workability    frost resistance    durability
                    发布日期:  2020-04-10
ZTFLH:  TU528.042.4  
基金资助: 国家重点研发计划(2017YFC0505904);国家自然科学基金面上项目(51572293);山西重大专项研发计划(MC2016-02)
通讯作者:  wangdongmin2018@163.com   
作者简介:  白亚飞,现为中国矿业大学(北京)混凝土与环境材料研究所硕士研究生,在王栋民教授的指导下进行研究。目前主要研究领域为混凝土与水泥外加剂等。
王栋民,现为中国矿业大学(北京)化学与环境工程学院教授、博士生导师,中国矿业大学(北京)混凝土与环境材料研究所所长。兼任中国硅酸盐学会常务理事,中国硅酸盐学会固废分会理事长等职。他长期致力于现代高性能水泥混凝土材料及其化学外加剂的精细化工合成与应用以及工业/矿业固体废弃物处理与生态环境建筑材料制备与应用的研究。在现代水泥混凝土材料及外加剂、固废处理(包括粉煤灰、脱硫石膏、冶金渣、化工废渣、建筑垃圾等)与生态材料领域做了大量科研与技术开发工作,取得了显著成果。先后完成国家、部委、基金委和北京市等科研项目50余项,工业界项目数百项。科研成果获部委、行业协会和北京市科技进步奖10余项,国家发明专利授权9项,发表科技论文100余篇,出版学术专著6部。
引用本文:    
白亚飞, 王栋民. 公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的
国内外研究进展[J]. 材料导报, 2020, 34(7): 7099-7106.
BAI Yafei,WANG Dongmin. Domestic and Foreign Research Progress of Air-entraining Agents for Low-slump of Plastic Concrete and No-slump of Dry-hard Concrete Used in Highway Concrete. Materials Reports, 2020, 34(7): 7099-7106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030152  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7099
1 Sovannsathya R, Anuwat A, Ouchi M. Proceedings of the Japan Concrete Institute, 2016, 38 (1), 1413.
2 Sovannsathya R. Mix-proportion and mixing procedure for stable entrained air in self-compacting concrete.Master’s Thesis, Kochi University of Technology, Japan, 2016.
3 Chen J K, Wang D M. Journal of The Chinese Ceramic Society, 2000, 28(2),194(in Chinese).
陈建奎, 王栋民.硅酸盐学报, 2000,28(2),194.
4 Piekarczyk B Ł. Construction and Building Materials, 2013,40, 659.
5 You Q J, Xiao J X, Wang L X. New Building Materials, 1999(6), 32(in Chinese).
尤启俊, 肖景新, 王立新.新型建筑材料, 1999(6), 32.
6 Wang D M, Zhang L R, Zhang L W, et al. Journal of Building Mate-rial, 2012,15(6),755(in Chinese).
王栋民,张力冉,张伟利,等.建筑材料学报,2012,15(6),755.
7 Sovannsathya R, Nipat P, Anuwat A, et al. Journal of Advanced Concrete Technology, 2017, 15,29.
8 Okamura H, Ouchi M. Journal of Advanced Concrete technology, 2003, 1(1),5.
9 Ozawa K. In: Proceeding of the Third East Asia-Pacific Conference on Structural Engineering and Construction, Shanghai, 1989.
10 Wang D M, Xiong W F,Zuo Y F, et al.Concrete, 2008(5), 64(in Chinese).
王栋民,熊卫锋,左彦峰,等.混凝土, 2008(5), 64.
11 Sovannsathya R, Anuwat A, Ouchi M. Proceedings of the Japan Concrete Institute,2015,37(1),1447.
12 Xue Q. Concrete, 2005(4), 22(in Chinese).
薛庆.混凝土, 2005(4),22.
13 Aitcin P C, Miao B. In: How to make high performance concrete, Chern JC, ed., Taiwan, China, 1992, pp.91.
14 Ling H Y, Cai Z S, Hu S J. Journal of China & Foreign Highway, 2017,37(4),280(in Chinese).
凌海宇,蔡正森,胡师杰.中外公路,2017,37(4),280.
15 Tang X S, Fang X S, Wen J B, et al. Concrete,2017(4),75(in Chinese).
唐修生,方绪顺,温金保,等.混凝土,2017(4),75.
16 Zaitri R, Bederina M, Bouziani T, et al. Construction and Building Materials,2014, 60(16),8.
17 Ren F, Mattus C H, Wang J J, et al.Cement and Concrete Composites, 2013, 41,1.
18 Luo S Q,Wang W,Tan B F, et al. Concrete, 2017(6),157(in Chinese).
罗思桥,汪伟,谭博夫,等.混凝土,2017(6),157.
19 Tong K P, Zhu H B. New Building Materials, 2017(6),97(in Chinese).
同昆朋,朱洪波.新型建筑材料,2017(6),97.
20 Ambily P S, Umarani C, Ravisankar K, et al. Construction and Building Materials, 2015, 77(15),233.
21 Akca A H, Zihniogˇlu N . Construction and Building Materials, 2013, 44, 317.
22 Lange A, Plank J. Cement and Concrete Research, 2016, 79,131.
23 Ilg M, Plank J. Cement and Concrete Research, 2016, 79,123.
24 Ataie F F, Juenger M C G, Taylor-Lange S C, et al. Cement and Concrete Research, 2015, 72,128.
25 Tan H, Gu B, Ma B, et al. Applied Clay Science, 2016, 129,40.
26 Liew K M, Sojobi A O, Zhang L W. Construction and Building Mate-rials, 2017, 156,1063.
27 Plank J, Hirsch C. Cement and Concrete Research, 2007, 37(4),537.
28 Jiang Y Q,Xu Z Z,Li F, et al. Journal of Southeast University, 2006,36(4),568(in Chinese).
蒋亚清,许仲梓,黎非,等.东南大学学报,2006,36(4),568.
29 Sha H W. Concrete, 2000(3),9(in Chinese).
沙慧文.混凝土, 2000(3),9.
30 Huang F L, Li H J, Yi Z L. Construction and Building Materials, 2018,166,833.
31 Khayat K H, Assaad J. ACI Materials Journal, 2002, 99(4), 408.
32 Zhang J X,Guo M Y,Yang R J, et al. Journal of Wuhan University of Technology, 2008, 30(5),38(in Chinese).
张金喜, 郭明洋, 杨荣俊,等.武汉理工大学学报, 2008, 30(5),38.
33 Hasholt M T. Materials & Structures, 2014, 47(5), 911.
34 Fu Z. Highway, 1998(2), 2(in Chinese).
傅智.公路, 1998(2),2.
35 Lang H D. New Progress in Research and Application of Chemical Admixtures and Mineral Admixtures in China, 2016(2),370(in Chinese).
郎慧东.中国化学外加剂及矿物外加剂研究与应用新进展,2016(2),370.
36 Chen Y Q. New Building Materials, 2002(2),1(in Chinese).
陈应钦.新型建筑材料, 2002(2),1.
37 Yang Q R. Journal of Building Material, 2004, 7(4),457(in Chinese).
杨钱荣.建筑材料学报, 2004, 7(4),457.
38 Malhotra V M. Cement Concrete & Aggregates, 1982, 4(1), 21.
39 Fan S F. China Concrete and Cement Products, 1991(1), 11(in Chinese).
范沈抚.混凝土与水泥制品, 1991(1),11.
40 Yue X G, Wang P M, Zhu Y C. New Building Materials, 2009, 36(11),8(in Chinese).
岳兴国, 王培铭, 朱永超.新型建筑材料, 2009, 36(11),8.
41 Baltrus J P, LaCount R B. Cement and Concrete Research, 2001,31,819.
42 Khayat K H. Materials Journal, 1995, 92(6), 625.
43 Li J P, Sheng Y, Chou Y L. Subgrade Engineering,2007(3),1(in Chinese).
李金平,盛煜,丑亚玲.路基工程,2007(3),1.
44 Chatterji S. Cement and Concrete Composites, 2003, 25(7), 759.
45 Beaupré D, Lacombe P, Khayat K H. Materials & Structures, 1999, 32(3),235.
46 Yang Q R, Zhang S Q,Yang Q B, et al. Journal of Tongji University (Natural Science Edition), 2008, 36(3),374(in Chinese).
杨钱荣, 张树青, 杨全兵,等.同济大学学报(自然科学版), 2008, 36(3),374.
47 Kobayashi M, Nakakuro E, Kodama K, et al. Special Publication, 1981, 68, 269.
48 Du Z Q, Sun W. Journal of Southeast University(Natural Science Edition), 2010, 40(3),614(in Chinese).
杜志芹, 孙伟.东南大学学报(自然科学版), 2010, 40(3),614.
49 Ke G J,Tian B,Wang J L.Journal of Building Material, 2014,17(4),743(in Chinese).
柯国炬,田波,王稷良.建筑材料学报,2014,17(4),743.
50 You Y K, Miao C W, Liu J P. Chemical Materials for Construction, 2002(4),39(in Chinese).
游有鲲,缪昌文,刘加平.化学建材,2002(4),39.
51 Ren X M, Guo C, Hao T Y. In: National Concrete Admixture Application Technology Professional Committee Annual Meeting, Beijing, China, 2009,pp.225(in Chinese).
任雪梅, 郭诚, 郝挺宇.第四届全国混凝土外加剂应用技术专业委员会年会, 北京,2009,pp.225.
52 Zhu B R, Yang Q B, Wu X L. Concrete, 2001(4), 21(in Chinese).
朱蓓蓉,杨全兵,吴学礼.混凝土,2001(4),21.
53 Ma F L, Li S C, Gao S G, et al. Journal of China Institute of Water Resources and Hydropower Research, 2006, 4(2), 119(in Chinese).
马锋玲,李舜才,高曙光,等.中国水利水电科学研究院学报,2006,4(2),119.
54 Ding B, Zhong H T, Liu J P. Water Resources and Hydropower Enginee-ring, 2007(3),107(in Chinese).
丁蓓,钟海涛,刘家平. 水利水电施工, 2007(3), 107.
55 Chen Q H, Liang H, Xu Z T. Concrete, 2010(7),98(in Chinese).
陈峭卉,粱晖,徐卓涛.混凝土,2010(7),98.
56 Jennings K, Marshall I, Birrell H, et al. Chemical Communications, 1998(18), 1951.
57 Tang X S, Lin Y H, Wen J B, et al. New Building Materials, 2016(11), 90(in Chinese).
唐修生,林宇辉,温金保,等.新型建筑材料,2016(11),90.
58 Mendes J C, Moro T K, Figueiredo A S, et al. Construction and Building Materials, 2017, 145,648.
59 Chen J, Qiao M, Gao N, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522,593.
60 Barfield M, Ghafoori N. Construction and Building Materials, 2012, 26,490.
61 Wang D M, Bai Y F, Du W Q. China Concrete and Cement Products,2019(7),17(in Chinese).
王栋民,白亚飞,杜文倩.混凝土与水泥制品,2019(7),17.
[1] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[2] 戈雪良, 陆采荣, 梅国兴. 降温速率对混凝土冻结应力的影响及机理研究[J]. 材料导报, 2020, 34(8): 8051-8057.
[3] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[4] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[5] 杨海涛, 刘娟红, 纪洪广, 周昱程. 利用优化的水渗透试验研究SAPs的裂缝愈合机理[J]. 材料导报, 2020, 34(8): 8188-8193.
[6] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[7] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[8] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[9] 谢振康, 金伟良, 毛江鸿, 张军, 樊玮洁, 夏晋. 双向电迁移后混凝土内钢筋氢含量变化及影响[J]. 材料导报, 2020, 34(2): 2039-2045.
[10] 汪源, 汪苏平, 张亚利, 纪宪坤. 混凝土增粘剂的制备及应用性能研究[J]. 材料导报, 2019, 33(Z2): 283-287.
[11] 何欢, 杨荣俊, 文俊强, 唐芮枫, 王子明. 车桥耦合扰动对硫铝酸盐水泥混凝土修补材料性能的影响[J]. 材料导报, 2019, 33(Z2): 288-292.
[12] 刘婉婉, 马昆林, 张传芹, 龙广成, 谢友均, 边伟. 透水混凝土对城市雨水径流中污染物净化原理的研究进展[J]. 材料导报, 2019, 33(Z2): 293-299.
[13] 任国宏, 廖洪强, 程芳琴, 闫志华. 发泡混凝土碱浸试块碳酸化增强固碳特性研究[J]. 材料导报, 2019, 33(Z2): 300-303.
[14] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[15] 李地红, 高群, 夏娴, 张景卫, 于海洋, 王艳君, 代函函, 许国栋. 基于BP神经网络的混凝土综合性能预测[J]. 材料导报, 2019, 33(Z2): 317-320.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed