Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20022-20027    https://doi.org/10.11896/cldb.20070236
  无机非金属及其复合材料 |
超早强聚羧酸对低坍落度混凝土流变与气泡结构经时变化的影响
姜骞1, 于诚1, 袁森森1, 冉千平2
1 江苏苏博特新材料股份有限公司高性能土木工程材料国家重点实验室,南京 211103
2 东南大学材料科学与工程学院,南京 211189
Influence of Super Early Strength Polycarboxylate Superplasticizer on Time-dependent Behavior of Rheological Properties and Air-Void Structure of Low Slump Concrete
JIANG Qian1, YU Cheng1, YUAN Sensen1, RAN Qianping2
1 State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co. Ltd., Nanjing 211103, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 4749KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别采用两种超长侧链聚羧酸减水剂与一种常规聚羧酸减水剂制备低坍落度混凝土,通过测试分析湿筛砂浆流动度、流变性、气泡结构参数以及三维重构气泡形态,对比研究了超长侧链聚羧酸减水剂对混凝土工作性能与气泡特征经时变化的影响。结果表明:低坍落度混凝土湿筛砂浆符合宾汉姆流体特征,流动度与屈服应力具有强线性相关性,减水剂种类对其影响较小,但超长侧链聚羧酸对砂浆流动度的经时保持作用明显弱于普通聚羧酸。超长侧链聚羧酸在砂浆中的引气数量和小孔径气泡占比均低于普通聚羧酸,并且超长侧链聚羧酸加速了砂浆中小孔径气泡向大孔径气泡的转变。CT三维重构试验直观地证实了砂浆中相邻小气泡聚并成大气泡现象的存在,超长侧链聚羧酸使得砂浆中气泡聚并发生的时间比普通聚羧酸更早。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜骞
于诚
袁森森
冉千平
关键词:  超早强聚羧酸  低坍落度  超长侧链  混凝土  流变  气泡    
Abstract: Polycarboxylate (PCE) comb-like copolymers with super-length side chains (i.e., one with ether-type side chains and the other with ester-type side chains) and normal-length side chains were employed to prepare low slump concrete in this paper. Influence of the superplasticizers on the time-dependent behavior of fresh properties and air-void structure of low slump concrete were investigated by fluidity test, rheological analysis, air-void parameters measurement of wet-screened mortar and air bubble shape 3D reconstruction in the mortar during hardening. The results showed that a strong linear relationship between fluidity and yield stress of the wet-screened mortar as Bingham fluid was revealed, regardless of PCE types. Superplasticizers with super-length of side chains weakened the fluidity retention of mortar in comparison with superplasticizer of normal molecular structure. The two PCEs with super-length side chains presented less initial air-entraining efficacy and amount ratio of small air bubbles than the normal one, and advanced the process of reduction of small air bubbles and growth of large air bubbles. The 3D reconstruction analysis of air bubble shape visually proved the coalescence of adjacent bubbles exists, and PCEs with super-length side chains led to an earlier coalescence.
Key words:  super early strength polycarboxylate    low slump    super-length side chains    concrete    rheology    air-void
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TU528.31  
基金资助: 江苏省自然科学基金(BK20181127);江苏省交通运输科技与成果转化项目(2019Z04)
通讯作者:  jiangqian@cnjsjk.cn   
作者简介:  姜骞,江苏苏博特新材料股份有限公司高级工程师。2013年3月毕业于东南大学,获得硕士学位,主要从事混凝土性能提升领域的研究。
引用本文:    
姜骞, 于诚, 袁森森, 冉千平. 超早强聚羧酸对低坍落度混凝土流变与气泡结构经时变化的影响[J]. 材料导报, 2021, 35(20): 20022-20027.
JIANG Qian, YU Cheng, YUAN Sensen, RAN Qianping. Influence of Super Early Strength Polycarboxylate Superplasticizer on Time-dependent Behavior of Rheological Properties and Air-Void Structure of Low Slump Concrete. Materials Reports, 2021, 35(20): 20022-20027.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070236  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20022
1 Sun W, Miao C W. The theory and technology of modern concrete, Science Press,2012(in Chinese).
孙伟,缪昌文.现代混凝土理论与技术,科学出版社,2012.
2 Li C Z, Feng N Q, Niu Q L. Journal of Building Materials,2004,7(2),194(in Chinese).
李崇智,冯乃谦,牛全林.建筑材料学报,2004,7(2),194.
3 Najimi M, Sobhani J, Pourkhorshidi A R. Construction and Building Materials,2012,30,529.
4 Zeng J, Shui Z, Wang G. Journal of Wuhan University of Technology-Materials Science Edition,2010,25(4),712.
5 Yang J Y, Sven M F A. Concrete,2005(12),98(in Chinese).
杨健英,Sven M F A.混凝土,2005(12),98.
6 Ran Q, Liu J, Miao C, et al. Journal of the Chinese Ceramic Society,2010,38(9),1718.
7 Kong F, Pan L, Wang C, et al. Construction and Building Materials,2016,105,545.
8 Wang X, Zhang J, Yang Y, et al. Journal of Thermal Analysis and Calorimetry,2018,133,1439.
9 Ran Q, Somasundaran P, Miao C, et al. Journal of Colloid and Interface Science,2009,336(2),624.
10 Mou T M, Feng Z J, Ding Q J, et al. Concrete,2014(8),140(in Chinese).
牟廷敏,冯中军,丁庆军,等.混凝土,2014(8),140.
11 Najimi M, Sobhani J, Pourkhorshidi A R. Construction and Building Materials,2012,30,529.
12 Whiting D. ACI Materials Journal,1985,82(5),716.
13 Zain M F M, Safiuddin M, Yusof K M. Cement and Concrete Research,1999,29(9),1427.
14 Qiao M, Yu Y H, Ran Q P, et al. New Building Materials,2013,40(1),20(in Chinese).
乔敏,俞寅辉,冉千平,等.新型建筑材料,2013,40(1),20.
15 Bingham E C, Reiner M. Physics,1933,4(3),88.
16 Isik I E, Ozkul M H. Construction and Building Materials,2014,72,239.
17 Tang X S, Cai Y B, Wen J B, et al. Journal of the Chinese Ceramic Society,2014,42(5),648(in Chinese).
唐修生,蔡跃波,温金保,等.硅酸盐学报,2014,42(5),648.
18 Roussel N. Journal of the Chinese Ceramic Society,2015,43(10),1401(in Chinese).
Roussel N.硅酸盐学报,2015,43(10),1401.
19 Sovannsathya R, Puthipad N, Attachaiyawuth A, et al. Journal of Advanced Concrete Technology,2017,15(1),29.
20 Yan X F, Wang G J, Wang Y, et al. Chemical Industry and Engineering,2013,30(6),49(in Chinese).
闫雪飞,王桂军,王涌,等.化学工业与工程,2013,30(6),49.
21 Han S J, Hu Z D. Journal of Chemical Industry and Engineering,1997(1),75(in Chinese).
韩社教,胡宗定.化工学报,1997(1),75.
22 Sha S, Wang M, Shi C, et al. Construction and Building Materials,2020,233,1.
23 Xiang S C, Shi C J, Wu L M, et al. Journal of the Chinese Ceramic Society,2015,43(5),570(in Chinese).
向顺成,史才军,吴林妹,等.硅酸盐学报,2015,43(5),570.
[1] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[2] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[3] 索智, 陈欢, 张奥, 聂磊. 废植物油再生沥青紫外老化机理及路用性能[J]. 材料导报, 2021, 35(Z1): 662-668.
[4] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[5] 郭翠霞, 吴张永, 王航, 朱启晨, 邹应辉. 乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性[J]. 材料导报, 2021, 35(8): 8028-8033.
[6] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[7] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[8] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[9] 杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
[10] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[11] 陈新明, 史玉良, 焦华喆, 靳翔飞, 吴亚闯, 谭毅. 基于搜索锥算法的纤维分布特征及对BFRC的增强机制[J]. 材料导报, 2021, 35(4): 4061-4066.
[12] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[13] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[14] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[15] 王尚伟, 朱海堂, 王博, 寇磊. 混凝土配合比优化设计的紧密堆积理论综述[J]. 材料导报, 2021, 35(3): 3085-3091.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed