Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4061-4066    https://doi.org/10.11896/cldb.19120049
  无机非金属及其复合材料 |
基于搜索锥算法的纤维分布特征及对BFRC的增强机制
陈新明, 史玉良, 焦华喆, 靳翔飞, 吴亚闯, 谭毅
河南理工大学土木工程学院,焦作 454003
Fiber Distribution Characteristics Based on Search Cone Algorithm and Enhancement Mechanism of BFRC
CHEN Xinming, SHI Yuliang, JIAO Huazhe, JIN Xiangfei, WU Yachuang, TAN Yi
School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China
下载:  全 文 ( PDF ) ( 5540KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土基体内部纤维的取向、分布及纤维的接触点是影响纤维混凝土力学性能的重要因素,也是目前研究的薄弱环节。本实验研究纤维掺量对玄武岩纤维增强混凝土(BFRC)三轴力学性能的增强机制,采用CT技术和搜索锥算法实现BF的获取与识别,重点分析纤维掺量在1.5 kg/m3、3 kg/m3、4.5 kg/m3时BF分布角度、效率指数及接触点变化规律,揭示纤维形态学特征对BFRC力学性能的增强机理。结果表明:纤维掺量保持不变,峰值应力随围压的增大而增大;围压保持2 MPa不变,随着纤维掺量的提高,材料的峰值应力先增加后下降,最佳掺量为3 kg/m3,此时峰值应力为44.48 MPa,相比普通混凝土增加了99.64%。纤维追踪后发现:纤维在混凝土基体中乱向分布;在笛卡尔坐标系Z轴的方向角γ下,80~90°范围内纤维分布较多,纤维倾向于水平放置,近似与竖向裂缝垂直;在方向角α下,30~50°范围内纤维分布较多,对于控制斜向裂缝最为有利;不同掺量下的纤维效率指数eiy分别为0.57、0.65、0.55,进一步说明纤维倾向于平行Y轴;随着纤维掺量的增加(1.5 kg/m3、3 kg/m3、4.5 kg/m3),纤维接触率分别为0%、25%、49%,纤维结团现象愈发明显,三轴强度分别为26.63 MPa、44.48 MPa、42.43 MPa,纤维接触在一定程度上影响BFRC的三轴力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈新明
史玉良
焦华喆
靳翔飞
吴亚闯
谭毅
关键词:  玄武岩纤维增强混凝土  搜索锥算法  纤维接触点  三维乱向分布  增强机制    
Abstract: The orientation and distribution of the fiber in the concrete matrix and the contact point of the fiber are the important factors affecting the mechanical properties of fiber reinforced concrete, and they are also the weak links in the current research. In this experiment, the enhancement mechanism of fiber content on (BFRC) triaxial mechanical properties of basalt fiber reinforced concrete is studied. CT technology and search cone algorithm are used to obtain and identify BF. The changes of BF distribution angle, efficiency index and contact point at 1.5 kg/m3, 3 kg/m3 and 4.5 kg/m3 are analyzed, and the enhancement mechanism of fiber morphology on BFRC mechanical properties is revealed. The results show that the fiber content remains unchanged, and the peak stress increases with the increase of confining pressure; the confining pressure remains unchanged at 2 MPa, and with the increase of fiber content, the peak stress of the material increases at first and then decreases, and the optimum content is 3 kg/m3, when the peak stress is 44.48 MPa, which is 99.64% higher than that of ordinary concrete. After fiber trac-king, it is found that the fibers are distributed randomly in the concrete matrix; under the azimuth of the Z axis of the Cartesian coordinate system, there are more fibers in the range of 80—90°, and the fibers tend to be placed horizontally, approximately perpendicular to the vertical cracks; under the azimuth, there are more fibers in the range of 30—50°, which is the most favorable for controlling oblique cracks. The fiber efficiency index (eiy) with different content is 0.57,0.65 and 0.55 respectively, which further indicates that the fiber tends to be parallel to the Y axis. With the increase of fiber content (1.5 kg/m3, 3 kg/m3, 4.5 kg/m3), the fiber contact rate is 0%, 25% and 49% respectively, and the fiber agglomeration phenomenon is more obvious. The triaxial strength of 26.63 MPa, 44.48 MPa, 42.43 MPa, fiber contact affects the triaxial mechanical properties of BFRC to a certain extent.
Key words:  basalt fiber reinforced concrete    search cone algorithm    fiber contact point    three-dimensional random distribution    reinforcement mechanism
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TU528.58  
基金资助: 国家自然科学基金(U1904188;51834001;51974105);河南省高校科技创新人才支持计划(19HASTIT047);河南省科技攻关计划项目(182102310012;172102210286)
通讯作者:  jiaohuazhe@126.com   
作者简介:  陈新明,博士,教授级高级工程师,硕士研究生导师,主要从事高性能喷射混凝土、松散地层冻结等研究。
焦华喆,博士,讲师,主要从事矿山充填开采、隧道开挖与支护等方面的研究。
引用本文:    
陈新明, 史玉良, 焦华喆, 靳翔飞, 吴亚闯, 谭毅. 基于搜索锥算法的纤维分布特征及对BFRC的增强机制[J]. 材料导报, 2021, 35(4): 4061-4066.
CHEN Xinming, SHI Yuliang, JIAO Huazhe, JIN Xiangfei, WU Yachuang, TAN Yi. Fiber Distribution Characteristics Based on Search Cone Algorithm and Enhancement Mechanism of BFRC. Materials Reports, 2021, 35(4): 4061-4066.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120049  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4061
1 Sun Q,Zhang X D,Yang Y. Journal of China Coal Society,2013,38(6),994(in Chinese).
孙琦,张向东,杨逾.煤炭学报,2013,38(6),994.
2 Zhou Y, Liu J, Huang S, et al.Construction and Building Materials, 2020, 230,116909.
3 Jiao H Z,Han Z Y,Chen X M.Journal of China Coal Society, 2019,44(10),2990(in Chinese).
焦华喆,韩振宇,陈新明.煤炭学报,2019,44(10),2990.
4 Liu J H,Li K,Song S M, et al. Materials Reports B:Research Papers,2017,31(2),105(in Chinese).
刘娟红,李康,宋少民,等.材料导报:研究篇,2017,31(2),105.
5 Jiang S Y,Tao S,Yao W L, et al.Materials Reports B:Research Papers,2017,31(12),161(in Chinese).
江世永,陶帅,姚未来,等.材料导报:研究篇,2017,31(12),161.
6 Liu J H,Zhou Y C,Ji H G.Journal of China Coal Society, 2018,43(12),3364(in Chinese).
刘娟红,周昱程,纪洪广.煤炭学报,2018,43(12),3364.
7 Cao S, Yilmaz E, Song W.Construction and Building Materials, 2019, 223, 44.
8 Jiao H Z,Han Z Y,Chen X M.Acta Materiae Compositae Sincia, 2019,36(8),1926(in Chinese).
焦华喆,韩振宇,陈新明.复合材料学报,2019,36(8),1926.
9 Pan H M,Ma Y C.Journal of Building Materials, 2017,20(6),956(in Chinese).
潘慧敏,马云朝.建筑材料学报,2017,20(6),956.
10 You Z G,Fu X Y,Zhou Y L, et al. Industrial Construction,2017,47(2),123(in Chinese).
尤志国,付秀艳,周云龙,等.工业建筑,2017,47(2),123.
11 Qing L B,Su Y M,Yu K L,et al. Journal of Materials Science and Engineering, 2019,37(3),480(in Chinese).
卿龙邦,苏怡萌,喻渴来,等.材料科学与工程学报,2019,37(3),480.
12 Zhang S, Liao L, Song S, et al.Composite Structures, 2018, 188,78.
13 Yang Z J, Qsymah A, Peng Y Z, et al.Cement and Concrete Composites, 2019,106,103473.
14 Vicente M A, Mínguez J, González D C.International Journal of Fatigue, 2019, 121,9.
15 Mínguez J, González D C, Vicente M A.Construction and Building Materials, 2018, 168, 906.
16 Wang W J,Jiang L,Chen Y.Concrete, 2017(6),136(in Chinese).
王文婧,姜鲁,陈阳.混凝土,2017(6),136.
17 Umbach C, Middendorf B.Materials Today: Proceedings, 2019, 15, 356.
18 Weber B, Greenan G, Prohaska S, et al. Journal of Structural Biology, 2012, 178(2), 129.
19 Mínguez J, González D C, Vicente M A.Construction and Building Materials, 2018, 168, 906.
[1] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[2] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[3] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[4] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[5] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[6] 牛恒茂, 武文红, 赵燕茹, 邢永明. 基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能[J]. 材料导报, 2018, 32(6): 995-999.
[7] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[8] 武文红, 牛恒茂, 赵燕茹, 邢永明. 基于图像处理的纤维分布与取向分布对水泥基材料弯曲性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 140-146.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed