Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 66-72    https://doi.org/10.11896/j.issn.1005-023X.2017.023.008
  专题栏目:超高性能混凝土及其工程应用 |
钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*
季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险
福州大学土木工程学院,福州 350116
Strenghening and Toughening Granite-powder-contained UHPC by Steel Fibers: Influences of Zinc Phosphate Treatment and Fiber Shape,and Mechanisms
JI Tao, LIN Xiaoying, LIANG Yongning, CHEN Baochun, YANG Zhengxian
College of Civil Engineering, Fuzhou University, Fuzhou 350116
下载:  全 文 ( PDF ) ( 2246KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用自制的单根钢纤维拉拔试验装置等,通过拉拔试验和SEM-EDS等试验,开展钢纤维的磷酸锌(ZnPh)改性及其形状对在蒸压养护条件下的掺花岗岩石粉超高性能混凝土(UHPC)增强增韧影响机理的研究。所研究钢纤维形状包括:镀铜平直型S、镀铜单折线端钩型G1、镀铜双折线端钩型G2和镀铜波浪型L。研究表明,钢纤维的机械咬合力起主导作用,钢纤维平均粘结强度与拔出功大小顺序均为:G1>G2>L>S。ZnPh改性后,钢纤维表面变粗糙,这增强了钢纤维与UHPC基体间的化学粘结力和静摩擦力,从而提高了钢纤维在UHPC中的平均粘结强度和拔出功。在UHPC韧性的提高方面,采用ZnPh改性,对S钢纤维最明显,而对异型钢纤维(G1、G2和L)则不明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季韬
林晓溁
梁咏宁
陈宝春
杨政险
关键词:  钢纤维形状  磷酸锌改性  花岗岩石粉  超高性能混凝土(UHPC)  拉拔性能    
Abstract: This paper investigates the effect of steel fiber's zinc phosphate (ZnPh) treatment and shape on the strength and toughness of ultra high performance concrete (UHPC) containing granite powders under autoclaved curing. Steel fibers with four dfferent shapes were used: straight with copper plating (S), single-linear hooked-end with copper plating (G1), bi-linear hooked-end with copper plating (G2) and crimped with copper plating (L). The results obtained from customized single steel fiber pullout test and SEM-EDS observation indicated that the mechanical interlock is the dominating effect for the enhanced strength and toughness of UHPC containing granite powders. The average bonding strength and pullout energy are in the order of G1>G2>L>S. The ZnPh treatment modified the fiber geometry, resulting in enhanced surface roughness, which increased the chemical bonding and static friction between the steel fibers and the UHPC matrix, and consequently raised the pullout energy of steel fibers in UHPC. Compared to G1, G2 and L steel fiber, the ZnPh treatment exhibited the most obvious effect toward S steel fiber in terms of enhanced toughness of UHPC.
Key words:  steel fiber shape    zinc phosphate treatment    granite powders    ultra high performance concrete (UHPC)    pullout beha-vior
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528.58  
基金资助: *国家自然科学基金重点项目(促进海峡两岸科技合作联合基金)(U1305245)
通讯作者:  杨政险:男,1976年生,博士,特聘教授,主要从事新型环保水泥基材料、混凝土耐久性等研究 E-mail: mine200mine@sina.com   
作者简介:  季韬:男,1972年生,博士,教授,博士研究生导师,主要从事新型环保水泥基材料、超高性能混凝土等研究 E-mail: jt72@126.com
引用本文:    
季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
JI Tao, LIN Xiaoying, LIANG Yongning, CHEN Baochun, YANG Zhengxian. Strenghening and Toughening Granite-powder-contained UHPC by Steel Fibers: Influences of Zinc Phosphate Treatment and Fiber Shape,and Mechanisms. Materials Reports, 2017, 31(23): 66-72.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.008  或          http://www.mater-rep.com/CN/Y2017/V31/I23/66
1 Larrard D F, Sedran T. Optimization of ultra-high-performance concrete by the use of a packing model[J]. Cem Concr Res, 1994, 24(6):997.
2 Richard P, Cheyrezy M. Composition of reactive powder concretes[J]. Cem Concr Res, 1995, 25(7):1501.
3 蔡振哲. 花岗岩石粉在加气混凝土中的应用研究[J]. 墙材革新与建筑节能, 2015(6):32.
4 Ren W G, Zhuang Y Z, Yu L X. Preparation and properties of gra-nite stone powder-high toughness cementitious composite [J]. Sci Technol Eng, 2016, 16(17):269(in Chinese).
任卫岗, 庄一舟, 于丽雪. 花岗岩石粉-高韧性水泥基复合材料的制备与性能[J]. 科学技术与工程, 2016, 16(17):269.
5 黄乙纯. 掺花岗岩石粉RPC的力学性能研究[D]. 福州:福州大学, 2015.
6 Wille K, Naaman A E, El-tawil S, et al. Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ductility without heat curing[J]. Mater Struct, 2012, 45(3):309.
7 Park S H, Kim D J, Ryu G S, et al.Tensile behavior of ultra high performance hybrid fiber reinforced concrete[J]. Cem Concr Compos, 2012, 34(2):172.
8 Peng G F, Niu X J, Zhao Y L. Effects of deformed steel fiber on strengthening and toughening of ultra-high performance concrete [J]. J Build Mater, 2016(6):1013(in Chinese).
朋改非, 牛旭婧, 赵怡琳. 异形钢纤维对超高性能混凝土增强增韧的影响[J]. 建筑材料学报, 2016(6):1013.
9 Sun M, Wen D J. Test study on the bond strength between zinc phosphate steel fiber and cement [J]. Concrete, 2010(5):29(in Chinese).
孙敏, 闻荻江. 磷酸锌改性钢纤维与水泥基界面的黏接强度试验研究[J]. 混凝土, 2010(5):29.
10 Sugama T, Carciello N, Kukacka L E, et al. Interface between zinc phosphate-deposited steel fibres and cement paste[J]. J Mater Sci, 1992, 27(11):2863.
11 Zhang L H, Liu J Z, Liu J P, et al. Effect of zinc phosphate-treated steel fiber on uniaxial tensile property of ultra-high performance concrete [J]. Concrete, 2016(9):52(in Chinese).
张丽辉, 刘建忠, 刘加平, 等. 磷酸锌改性钢纤维对UHPC单轴拉伸性能的影响[J]. 混凝土, 2016(9):52.
12 Naaman A E, Najm H. Bond-slip mechanisms of steel fibers in concrete[J]. ACI Mater J, 1991, 88(2):135.
13 中国工程建设标准化协会混凝土结构专业委员会. CECS 38-2004 纤维混凝土结构技术规程(附条文说明)[S]. 北京: 中国计划出版社, 2004.
14 Tian W L, Wang X W, Li Z X. Research on the experiment of the bonding strength between deformed steel fiber and concrete [J]. J Build Mater, 2007, 10(3):337(in Chinese).
田稳苓, 王晓伟, 李子祥. 异形钢纤维与混凝土粘结性能试验研究[J]. 建筑材料学报, 2007, 10(3):337.
15 Elliott J C. Structure and chemistry of the apatites and other cal-cium orthophosphates[M]. Holand: Elsevier, 2013.
[1] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[2] 邵旭东, 邱明红, 晏班夫, 罗军. 超高性能混凝土在国内外桥梁工程中的研究与应用进展*[J]. CLDB, 2017, 31(23): 33-43.
[3] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述*[J]. CLDB, 2017, 31(23): 17-23.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed