Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 22040394-8    https://doi.org/10.11896/cldb.22040394
  无机非金属及其复合材料 |
凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估
王旭昊1,*, 侯鑫1, 甘珑1,2, 汪愿1, 边庆华3, 张久鹏1
1 长安大学公路学院,西安 710064
2 中国电建集团成都勘测设计研究院有限公司,成都 610072
3 甘肃路桥第三公路工程有限责任公司,兰州 730050
Pozzolanic Reactivity and Hydration Properties Assessment of Tuff Powder in Composite Cementitious Materials
WANG Xuhao1,*, HOU Xin1, GAN Long1,2, WANG Yuan1, BIAN Qinghua3, ZHANG Jiupeng1
1 School of Highway, Chang'an University, Xi'an 710064, China
2 PowderChina Chengdu Engineering Corporation Limited, Chengdu 610072, China
3 Gansu Road and Bridge Third Highway Engineering Corporation Limited, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 12236KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为响应国家“碳达峰、碳中和”战略,实现水泥行业绿色可持续发展,拟探究凝灰岩石粉作为辅助胶凝材料替代部分水泥后对水泥基材料的水化影响机理,以推动凝灰岩石粉在实际工程中的应用。本工作对花岗岩石粉、粉煤灰与凝灰岩石粉展开对比研究,首先基于火山灰活性指数法评价三者的火山灰活性大小,而后利用抗压强度测试以及X射线衍射(XRD)、热重-差热分析(TG-DTA)、扫描电镜(SEM)等微观手段研究了水泥-石粉及水泥-粉煤灰复合浆体的强度和水化发展规律,最后还对温室气体排放进行了评估。结果表明:凝灰岩石粉具有较弱的火山灰活性,其火山灰活性指数为52.5%,小于65%,一般情况下,不可直接作为水泥砂浆和混凝土的天然火山灰质材料;凝灰岩石粉在水泥基材料中存在晶核作用,可以促进水泥的早期水化,晶核作用的大小和粉体细度相关,细度较小的凝灰岩石粉对水化的促进作用强于细度偏大的花岗岩石粉;从化学结合水分析得出,受凝灰岩石粉晶核效应以及火山灰反应的影响,20%(质量分数,文中未特殊说明皆为质量分数)凝灰岩石粉复合体系与20%粉煤灰复合体系的水化程度基本一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王旭昊
侯鑫
甘珑
汪愿
边庆华
张久鹏
关键词:  凝灰岩石粉  粉煤灰  花岗岩石粉  绿色可持续发展  水泥基材料    
Abstract: To respond to the “carbon peak, carbon neutral” strategy and realize the green and sustainable development of the cement industry, it is proposed to study the mechanism of the hydration effect on cement-based materials when tuff powder is used as supplementary cementitious material to replace part of cement. Through the research, we hope to promote the application of tuff powder in a practical project. In this work,a comparative study was carried out using granite powder, fly ash and tuff powder. The pozzolanic reactivity was evaluated by the pozzolanic reactivity index method, and then the strength and hydration development of cement-powder and cement-fly ash composite system were studied by compressive strength test and microscopic analysis means such as X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA) and scanning electron microscope (SEM). Finally, greenhouse gas emissions were assessed. The results showed that tuff powder had a weak pozzolanic reactivity. Specifically, its pozzolanic reactivity index was 52.5%, which was less than 65%. In general, it cannot be directly used as natural volcanic ash material for cement mortar and concrete. Tuff powder in cementitious materials will play the role of crystal nucleation, which can promote the early hydration of cement. The strength of nucleation effect was related to the fineness of the powder, and the smaller tuff powder had a stronger role in promoting hydration than the granite powder with a larger fineness. From the results of chemically bound water analysis, it was concluded that the hydration degree of tuff powder-cement composite system and fly ash-cement composite system was the same when the addition amount of mineral admixture was 20%, influenced by the nucleation effect and pozzolanic reactivity of tuff powder.
Key words:  tuff power    fly ash    granite power    green and sustainable development    cement-based materials
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TU528  
基金资助: 国家重点研发计划项目(2021YFB2601000);国家自然科学基金(52178185);中国博士后科学基金(2021MD703885)
通讯作者:  *wangxh@chd.edu.cn   
作者简介:  王旭昊,长安大学公路学院副教授、博士研究生导师。2009年本科毕业于爱荷华州立大学土木工程专业,2011年、2014年硕士及博士毕业于爱荷华州立大学道路工程及土木工程材料专业。目前主要从事特殊地区与环境下交通基础设施水泥混凝土结构与材料耐久性的科研工作。发表学术论文及科研报告50余篇,期刊包括Cement and Concrete Composites、ACI Materials Journal、Construction and Building Materials、Magazine of Concrete Research等.
引用本文:    
王旭昊, 侯鑫, 甘珑, 汪愿, 边庆华, 张久鹏. 凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估[J]. 材料导报, 2022, 36(16): 22040394-8.
WANG Xuhao, HOU Xin, GAN Long, WANG Yuan, BIAN Qinghua, ZHANG Jiupeng. Pozzolanic Reactivity and Hydration Properties Assessment of Tuff Powder in Composite Cementitious Materials. Materials Reports, 2022, 36(16): 22040394-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040394  或          http://www.mater-rep.com/CN/Y2022/V36/I16/22040394
1 Stafford F N, Raupp-Pereira F, Labrincha J A, et al. Journal of Cleaner Production, 2016, 137, 1293.
2 Rajamma R, Senff L, Ribeiro M J, et al. Composites Part B: Enginee-ring, 2015, 77, 1.
3 Wan X M, Zhang Y, Zhao T J, et al. Materials Reports B: Research Papers, 2018, 32(6), 2091(in Chinese).
万小梅, 张宇, 赵铁军,等. 材料导报:研究篇, 2018, 32(6), 2091.
4 Liu S H, Fang P P, Wang H L, et al. Powder Technology,2021,380,59.
5 Shi Y, Li X, Li Y, et al. Frontiers in Materials, 2020, 7, 595997.
6 Letelier G V, Ortega J M, Tremiño R M, et al. Applied Sciences, 2020, 10(4), 1460.
7 Labbaci Y, Abdelaziz Y, Mekkaoui A, et al. Construction and Building Materials, 2017, 133, 468.
8 Zhang Y S, Bu C X, Xu W T, et al. Water Power, 1992(10), 30(in Chinese).
张玉生, 卜崇先, 许文涛, 等. 水力发电, 1992(10), 30.
9 Hu Y R, Hu X L. Yunnan Water Power,2000,16(2),53(in Chinese).
胡以仁, 胡晓林. 云南水力发电, 2000, 16(2), 53.
10 Soroka I, Setter N.Cement and Concrete Research, 1977, 7(4), 449.
11 Péra J, Husson S, Guilhot B.Cement and Concrete Composites, 1999, 21(2), 99.
12 Bentz D P.Cement and Concrete Composites, 2006, 28(2), 124.
13 Bentz D P, Ardani A, Barrett T, et al. Construction and Building Mate-rials, 2015, 75, 1.
14 Sato T, Diallo F.Transportation Research Record, 2010, 2141(1), 61.
15 Zajac M, Rossberg A, Saout G L, et al. Cement and Concrete Compo-sites, 2014, 46, 99.
16 Weerdt K D, Haha M B, Saout G L, et al. Cement and Concrete Research, 2011, 41(3), 279.
17 Matschei T, Lothenbach B, Glasser F P.Cement and Concrete Research, 2007, 37(4), 551.
18 Thongsanitgarn P, Wongkeo W, Chaipanich A, et al. Construction and Building Materials, 2014, 66(36), 410.
19 Wang J L. Research of effects and mechanism of manufactured sand chara-cteristics on Portland cement concrete. Ph.D. Thesis, Wuhan University of Technology, China, 2008(in Chinese).
王稷良. 机制砂特性对混凝土性能的影响及机理研究. 博士学位论文, 武汉理工大学, 2008.
20 Shen W G, Liu Y, Wang Z W, et al. Construction and Building Mate-rials, 2018, 172,574.
21 Shi C J, Wang D H, Jia H F. Journal of the Chinese Ceramic Society, 2017, 45(11), 1582(in Chinese).
史才军, 王德辉, 贾煌飞, 等. 硅酸盐学报, 2017, 45(11), 1582.
22 Letelier V, Ortega J M, Tremiño R M, et al. Applied Sciences, 2020, 10(4), 1460.
23 Hammond G P, Jones C I.Proceedings of the Institution of Civil Engineers-Energy, 2008, 161(2), 87.
24 Letelier V, Ortega J M, Tarela E, et al. Sustainability, 2018, 10(9), 3036.
25 Elza Bontempi.Journal of Cleaner Production, 2017, 162, 162.
26 Li X, Shi Y, Li J Z, et al. Journal of Building Materials, 2017, 20(3), 435(in Chinese).
李响, 石妍, 李家正, 等. 建筑材料学报, 2017, 20(3), 435.
27 Li X, Li Z P, Hu X, et al. Journal of Yangtze River Scientific Research Institute, 2018, 35(5), 115(in Chinese).
李响, 李正平, 胡贤, 等. 长江科学院院报, 2018, 35(5), 115.
[1] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[2] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[3] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[4] 童国庆, 张吾渝, 高义婷, 唐雄宇. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报, 2022, 36(4): 20100278-6.
[5] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[6] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[7] 宋学锋, 丁浩. LaCl3@Zeolite自支撑多孔吸附材料的制备及其同步脱氮除磷效果[J]. 材料导报, 2022, 36(14): 21040103-7.
[8] 陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构[J]. 材料导报, 2022, 36(12): 20100140-9.
[9] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[10] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[11] 刘攀攀, 聂轶苗, 夏淼, 王玲, 刘淑贤, 王森, 王迎春, 刘朔宇, 翟培鑫. 三种粉煤灰的碱溶出特性及制备矿物聚合物的研究进展[J]. 材料导报, 2021, 35(Z1): 639-643.
[12] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[13] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[14] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[15] 石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed