Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21040103-7    https://doi.org/10.11896/cldb.21040103
  无机非金属及其复合材料 |
LaCl3@Zeolite自支撑多孔吸附材料的制备及其同步脱氮除磷效果
宋学锋, 丁浩
西安建筑科技大学材料科学与工程学院,西安 710055
Preparation of LaCl3@Zeolite Self-supporting Porous Adsorption Materials and Their Effects of Simultaneous Nitrogen and Phosphorus Removal
SONG Xuefeng, DING Hao
School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055,China
下载:  全 文 ( PDF ) ( 4633KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以粉煤灰为前驱体、偏硅酸钠为激发剂,通过化学发泡原理制备富含类沸石相的粉煤灰基多孔地质聚合物;以多孔地质聚合物为基本骨架,经水热转化、LaCl3负载改性制备自支撑多孔吸附材料。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、比表面积分析(BET)、X射线能谱分析(EDS)等测试手段对所得吸附材料进行了表征,并通过静态吸附试验研究其同步脱氮除磷效果。研究结果表明:利用氯化镧溶液浸渍自支撑多孔吸附材料,可将La3+成功负载于多孔吸附材料上;当氮溶液和磷溶液pH值为6、氨氮初始浓度为25 mg/L、磷初始浓度为30 mg/L、固液比(吸附材料与氮磷水样质量比)为1∶15时,LaCl3@Zeolite自支撑多孔吸附材料对氨氮和磷的去除率分别达到了90%和100%,且其静态吸附等温线符合Langmuir等温吸附模型,吸附动力学数据符合准二级动力学方程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋学锋
丁浩
关键词:  氯化镧  粉煤灰  自支撑多孔吸附材料  NaP型沸石  同步脱氮除磷    
Abstract: Using fly ash as precursor and sodium metasilicate as activator, fly ash-based porous geopolymer rich in zeolite-like phase was prepared by chemical foaming principle. Using porous geopolymer as the basic framework, the self-supporting porous adsorption materials were prepared by hydrothermal conversion and LaCl3 loading modification. The performances of the above adsorption materials were characterized by SEM, XRD, BET and EDS. Meanwhile, the effect of simultaneous nitrogen and phosphorus removal for the prepared adsorption materials were studied through static adsorption experiments. The research results show that the use of lanthanum chloride solution to impregnate the self-supporting porous adsorption material can successfully load La3+ on the porous adsorption material. When the pH value of the nitrogen and phospho-rus solution is 6, the initial concentration of ammonia nitrogen is 25 mg/L, the initial concentration of phosphate is 30 mg/L, and the solid-to-liquid ratio is 1∶15 (mass ratio of the adsorption meterial to the nitrogen and phosphorus water sample), the removal rate of ammonia nitrogen and phosphorus from LaCl3@Zeolite self-supporting porous adsorption material reaches 90% and 100%, respectively. And the static adsorption isotherm conformed to the Langmuir isotherm adsorption model, and the adsorption kinetic data conformed to the pseudo-second-order kinetic equation.
Key words:  lanthanum chloride    fly ash    self-supporting porous absorption material    zeolite NaP    simultaneous nitrogen and phosphorus removal
发布日期:  2022-07-26
ZTFLH:  TU528  
基金资助: 陕西省科技厅科研攻关项目(2018SF-367)
通讯作者:  songxuefeng@xauat.edu.cn   
作者简介:  宋学锋,2008年毕业于陕西师范大学,获得应用化学博士学位,2013年9月至2014年9月以高级访问学者在华盛顿州立大学学习交流一年。从2002年开始就职于西安建筑科技大学,2014年获得教授职称。主要研究方向为高强高性能混凝土及其耐久性、固体废弃物资源化利用以及建筑功能材料制备理论与技术,发表科研论文近50篇。
引用本文:    
宋学锋, 丁浩. LaCl3@Zeolite自支撑多孔吸附材料的制备及其同步脱氮除磷效果[J]. 材料导报, 2022, 36(14): 21040103-7.
SONG Xuefeng, DING Hao. Preparation of LaCl3@Zeolite Self-supporting Porous Adsorption Materials and Their Effects of Simultaneous Nitrogen and Phosphorus Removal. Materials Reports, 2022, 36(14): 21040103-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040103  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21040103
1 Lyu C P. Study on adsorption characteristics of ammonia nitrogen in wastewater by fly ash zeolite. Master's Thesis, Chongqing University, China, 2018(in Chinese).
吕晨培. 粉煤灰合成沸石对废水中氨氮的吸附特性研究. 硕士学位论文, 重庆大学, 2018.
2 He H F, Li Y G. Water Purification Technology, 2018, 37(2), 79(in Chinese).
何宏福, 李亚光. 净水技术, 2018, 37(2), 79.
3 Zhang X, Ta N. Industrial Water Treatment, 2011, 31(7), 13(in Chinese).
张昕, 塔娜. 工业水处理, 2011, 31(7), 13.
4 Daviddovits J. Journal of Thermal Analysis, 1989, 35(2), 429.
5 Daviddovits J. Journal of Thermal Analysis, 1991, 37(8), 1633.
6 Ge Y Y. Fabircation of metakaolin geopolymer-based adsorbents and their applied performance for heavy metal retention. Master's Thesis,Guangxi University, China, 2015(in Chinese).
葛圆圆. 偏高岭土地质聚合物基重金属离子吸附剂的制备及其性能研究. 硕士学位论文,广西大学, 2015.
7 Xie J, Wang Z, Fang D, et al. Journal of Colloid & Interface Science, 2014, 423, 13.
8 Meng S L, Hu G D, Qu J H, et al. Ecology and Environmental Sciences, 2012(11), 91(in Chinese).
孟顺龙, 胡庚东, 瞿建宏, 等. 生态环境学报, 2012(11), 91.
9 Li J, Zhan Y H, Lin J W. Journal of Ecology and Rural Environment, 2013, 29(4), 500(in Chinese).
李佳, 詹艳慧, 林建伟. 生态与农村环境学报, 2013, 29(4), 500.
10 State Environmental Protection Administration, Editorial Board of Water and Wastewater Monitoring and Analysis. Water and wastewater monitoring and analysis methods (fourth edition) supplementary edition, China Environmental Science Press, China, 2012(in Chinese).
国家环境保护总局, 水和废水监测分析编委会. 水和废水监测分析方法(第四版)增补版,中国环境科学出版社, 2012.
11 Goscianska J, Ptaszkowska-koniarz M, Frankowski M, et al. Journal of Colloid and Interface Science, 2017, 513, 72.
12 Qiu X M, Liu Y D, Yan C J, et al. Acta Petrologica Et Mineralogica, 2018, 37(4), 669(in Chinese).
仇秀梅, 刘亚东, 严春杰, 等. 岩石矿物学杂志,2018,37(4),669.
13 Liu Z C, Shi X Y, Li Y G, et al. New Chemical Materials, 2018, 46(2), 205(in Chinese).
刘志超, 史晓燕, 李艳根, 等. 化工新型材料, 2018, 46(2), 205.
14 Hu A B, Zhang S H, Chen J G. Environmental Pollution and Control, 2011, 33(1), 74(in Chinese).
胡爱兵, 张书函, 陈建刚. 环境污染与防治, 2011, 33(1), 74.
15 Cheng Y, Huang T, Shi X, et al. Journal of Environmental Science, 2017, 57, 402.
16 Ma G P, Liu Z R, Zhao C L. China Environmental Science, 1999(4), 58(in Chinese).
马刚平, 刘振儒, 赵春禄. 中国环境科学, 1999(4), 58.
17 Ding W M, Huang X, Zhang L P. Environmental Science, 2003, 24(5), 110(in Chinese).
丁文明, 黄霞, 张力平. 环境科学, 2003, 24(5), 110.
18 He Y H.Study on function regulation and mechanism of simultaneous removal of nitrogen and phosphorus by natural zeolite. Ph.D. Thesis, University of Science and Technology Beijing, China, 2018(in Chinese).
贺银海. 沸石同步脱氮除磷功能调控及机理研究. 博士学位论文, 北京科技大学, 2018.
19 Wang C F, Li J S, Wang L J, et al. China Environmental Science, 2009, 29(1), 36(in Chinese).
王春峰, 李健生, 王连军, 等. 中国环境科学, 2009, 29(1), 36.
20 Zeng Z Z, Wang J B, Guo H L, et al. China Environmental Science, 2010, 30(5), 644(in Chinese).
曾正中, 王建博, 郭浩磊, 等. 中国环境科学, 2010, 30(5), 644.
[1] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[2] 童国庆, 张吾渝, 高义婷, 唐雄宇. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报, 2022, 36(4): 20100278-6.
[3] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[4] 刘攀攀, 聂轶苗, 夏淼, 王玲, 刘淑贤, 王森, 王迎春, 刘朔宇, 翟培鑫. 三种粉煤灰的碱溶出特性及制备矿物聚合物的研究进展[J]. 材料导报, 2021, 35(Z1): 639-643.
[5] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[6] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[7] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[8] 同帜, 黄开佩, 杨博文, 张健需. 低成本新型多孔陶瓷膜支撑体的制备及性能[J]. 材料导报, 2021, 35(6): 6054-6059.
[9] 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
[10] 秦媛, 王文彬, 刘加平. 淀粉基水化温升抑制剂对水泥-粉煤灰复合胶凝材料水化的影响[J]. 材料导报, 2021, 35(16): 16065-16069.
[11] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[12] 贾敏, 杨磊. 粉煤灰盐酸法提铝后残渣的综合利用研究[J]. 材料导报, 2020, 34(Z1): 277-279.
[13] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[14] 王长龙, 张凯帆, 左伟, 叶鹏飞, 赵高飞, 任真真, 林庚. 煤矸石粉煤灰加气混凝土的制备及性能[J]. 材料导报, 2020, 34(24): 24034-24039.
[15] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed