Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20100278-6    https://doi.org/10.11896/cldb.20100278
  无机非金属及其复合材料 |
碱激发粉煤灰地聚物的力学性能及微观机制研究
童国庆1,2, 张吾渝1,2,*, 高义婷1,2, 唐雄宇1,2
1 青海大学土木工程学院,西宁 810016
2 青海省建筑节能材料与工程安全重点实验室,西宁 810016
Mechanical Properties and Micromechanism of Alkali-activated Fly Ash Geopolymer
TONG Guoqing1,2, ZHANG Wuyu1,2,*, GAO Yiting1,2, TANG Xiongyu1,2
1 School of Civil Engineering, Qinghai University, Xining 810016, China
2 Qinghai Provincial Key Laboratory of Energy-saving Building Materials and Engineering Safety, Xining 810016, China
下载:  全 文 ( PDF ) ( 3659KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电力工业废渣通过碱激发可再生成一种新型的、绿色的高性能无机聚合物胶凝材料。试验以一级低钙粉煤灰为原材料、水玻璃和氢氧化钠为复合碱性激发剂制备粉煤灰地聚物,通过无侧限抗压强度试验、X 射线衍射试验和扫描电镜试验,研究碱激发剂模数和养护龄期的变化对粉煤灰地聚物力学性能的影响。试验结果表明:激发剂模数是影响地聚物试样力学性能的重要因素,随着模数的增大,试样无侧限抗压强度先增大后减小,在各养护龄期下模数为1.1时试样的无侧限抗压强度最高;粉煤灰玻璃体在碱性溶液的侵蚀破坏下发生解聚-缩聚反应,生成的N-A-S-H凝胶填充了试样孔隙,促进了试样无侧限抗压强度的增长;当模数为1.1且养护龄期为28 d 时,试样的无侧限抗压强度达到最大值10.3 MPa且微观结构密实、整体性强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
童国庆
张吾渝
高义婷
唐雄宇
关键词:  粉煤灰  激发剂模数  养护龄期    
Abstract: The waste residue of power industry can be regenerated into a new kind of green high-performance inorganic polymer cementitious material by alkali stimulation. The fly ash geopolymers were prepared from first grade low calcium fly ash as raw materials, sodium hydroxide as composite alkaline activator, and the influence of the modulus and curing age of alkali activator on the physical properties of fly ash geopolymers was studied through unconfined compressive strength(UCS) test, X-ray diffraction test and scanning electron microscope test. The test results show that the modulus of the exciter is an important factor affecting the mechanical properties of the geopolymer samples. With the increase of modulus, the UCS of the samples first increases and then decreases. When the modulus is 1.1 at each curing age, the UCS of the samples is the highest. Under the erosion and destruction of alkaline solution, fly ash vitreous occurs through depolymer-polycondensation reaction, and the N-A-S-H gel generated fills the pores of the sample, which promotes the increase of the UCS of the sample. When the modulus is 1.1 and the curing period is 28 days, the UCS of the sample reaches the maximum value of 10.3 MPa and the microstructure of the sample is compact and integral.
Key words:  fly ash    stimulant modulus    curing age
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TU526  
基金资助: 青海省科技计划项目(2020-ZJ-738);国家自然科学基金(51768060);青海省创新服务平台建设专项
通讯作者:  qdzwy@163.com   
作者简介:  童国庆,硕士研究生,2019年6月毕业于青海大学土木工程学院,获得工学学士学位。2019年9月至今在青海大学土木工程学院攻读岩土工程硕士学位,主要从事地基处理和碱激发胶凝材料方面的研究。
张吾渝,教授,1991年毕业于青海大学工业与民用建筑专业,1999年毕业于浙江大学岩土工程专业,获工学硕士学位,中国土木工程学会土力学及岩土工程分会土力学教学专业委员会委员;主要从事黄土的基本特性及地基处理研究。
引用本文:    
童国庆, 张吾渝, 高义婷, 唐雄宇. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报, 2022, 36(4): 20100278-6.
TONG Guoqing, ZHANG Wuyu, GAO Yiting, TANG Xiongyu. Mechanical Properties and Micromechanism of Alkali-activated Fly Ash Geopolymer. Materials Reports, 2022, 36(4): 20100278-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100278  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20100278
1 Li T, Guthrie J T. Bioresource Technology, 2010, 101(12), 4291.
2 Singh B, Ishwarya G, Gupta M, et al. Construction & Building Mate-rials, 2015, 85,78.
3 Ducman V, Korat L. Materials Characterization, 2016, 113, 207.
4 Yin M, Bai H T, Zhou L. Bulletin of the Chinese Ceramic Society, 2014, 33(10), 2723(in Chinese).
尹 明, 白洪涛, 周 吕. 硅酸盐通报, 2014, 33(10), 2723.
5 Davidovits J. U.S. patent, US4349386, 1980.
6 Liu Q, Zang H Y, Wang J X, et al. Journal of Shandong University of Science and Technology (Natural Science Edition), 2019, 38(3), 43(in Chinese).
刘庆, 臧浩宇, 王俊祥, 等. 山东科技大学学报(自然科学版), 2019, 38(3), 43.
7 Shi C, Jiménez A F, Palomo A. Cement & Concrete Research, 2011, 41(7), 750.
8 Gebregziabiher B S, Thomas R, Peethamparan S. Cement & Concrete Composites, 2015, 55, 91.
9 Zhang Y S, Sun W, She W, et al. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(5), 819.
10 Dombrowski K, Buchwald A, Weil M. Journal of Materials Science, 2007, 42(9), 3033.
11 Peng H, Cui C, Cai C S, et al. Journal of Composite Materials, 2016, 33(12), 2954(in Chinese).
彭晖, 崔潮, 蔡春声, 等. 复合材料学报, 2016, 33(12), 2954.
12 Meng X X, Han M F, Jia Y H, et al. New Building Materials, 2011, 38(12), 67(in Chinese).
孟宪娴, 韩敏芳, 贾屹海, 等. 新型建筑材料, 2011, 38(12), 67.
13 Hu M Y, Zhu X M, Long F M. Cement and Concrete Composites, 2009, 31(10), 762.
14 Komnitsas K, Zaharaki D, Perdikatsis V. Journal of Hazardous Mate-rials, 2009, 161(2-3), 760.
15 Ministry of Construction of the People's Republic of China. Standard for test methods of ordinary concrete mechanical properties, China Building Industry Press, China, 2016(in Chinese).
中华人民共和国建设部. 普通混凝土力学性能试验方法标准, 中国建筑工业出版社, 2016.
16 Shi C J, Roy D, Krivenko P. Alkali-activated cements and concretes, American CRC Press, 2006.
17 Wang H F, Fan Z T. Physical Testing and Chemical Analysis: Chemistry Part, 2008,44(1), 47(in Chinese).
汪华方, 樊自田. 理化检验(化学分册), 2008, 44(1), 47.
18 Sun S W. Well Construction Technology, 1984(2), 26(in Chinese).
孙淑文. 建井技术, 1984(2), 26.
19 Bakharev T, Sanjayan J G, Cheng Y. Cement & Concrete Research, 1999, 29(1), 113.
20 Provis J L, Yong C Z, Duxson P, et al. Colloids and Surfaces A: Physico-chemical and Engineering Aspects, 2009, 336(1-3), 57.
21 Xue C H, Nie J H, Gao L, et al. Non-metallic Minerals, 2016, 39(2), 5(in Chinese).
薛彩红, 聂金合, 高莉, 等. 非金属矿, 2016, 39(2), 5.
22 Celik T, Marar K. Cement & Concrete Research. 1996, 26(7), 1121.
23 Murayama N, Yamamoto H, Shibata J. International Journal of Mineral Processing, 2002, 64(1), 1.
24 Lecomte I, Henrist C, Liegeois M, et al. Journal of the European Cera-mic Society, 2006, 26(16), 3789.
25 Desilva P, Sagoe-Crenstil K, Sirivivatnanon V. Cement and Concrete Research, 2007, 37(4), 512.
26 Vargas A S D, Molin D C C D, Vilela A C F, et al. Cement & Concrete Composites, 2011, 33(6), 653.
27 Zhang B, Mackenzie K J D, Brown I W M. Journal of Materials Science, 2009, 44(17),4668.
28 Jindal B B, Singhal D, Sharma S, et al. Computers & Concrete, 2017, 20(6), 683.
29 Weng L Q, Kwesi S C, Song S H, et al. Journal of the Chinese Ceramic Society, 2005, 33(3), 276(in Chinese).
翁履谦, Kwesi S C, 宋申华, 等. 硅酸盐学报, 2005, 33(3), 276.
[1] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[2] 刘攀攀, 聂轶苗, 夏淼, 王玲, 刘淑贤, 王森, 王迎春, 刘朔宇, 翟培鑫. 三种粉煤灰的碱溶出特性及制备矿物聚合物的研究进展[J]. 材料导报, 2021, 35(Z1): 639-643.
[3] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[4] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[5] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[6] 同帜, 黄开佩, 杨博文, 张健需. 低成本新型多孔陶瓷膜支撑体的制备及性能[J]. 材料导报, 2021, 35(6): 6054-6059.
[7] 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
[8] 秦媛, 王文彬, 刘加平. 淀粉基水化温升抑制剂对水泥-粉煤灰复合胶凝材料水化的影响[J]. 材料导报, 2021, 35(16): 16065-16069.
[9] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[10] 贾敏, 杨磊. 粉煤灰盐酸法提铝后残渣的综合利用研究[J]. 材料导报, 2020, 34(Z1): 277-279.
[11] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[12] 王长龙, 张凯帆, 左伟, 叶鹏飞, 赵高飞, 任真真, 林庚. 煤矸石粉煤灰加气混凝土的制备及性能[J]. 材料导报, 2020, 34(24): 24034-24039.
[13] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[14] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[15] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed