Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21030218-5    https://doi.org/10.11896/cldb.21030218
  无机非金属及其复合材料 |
碱激发材料修补普通混凝土的黏结面性能研究
朱红光*, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳
中国矿业大学(北京)力学与建筑工程学院,北京 100083
Bonding Properties of Interface in Ordinary Concrete Repaired by Alkali-Activated Material
ZHU Hongguang*, HOU Jinliang, SHI Jing, GE Jieya, LYU Wei, YANG Sen, LI Zonghui, SHEN Zhengyan
School of Mechanics & Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
下载:  全 文 ( PDF ) ( 63122KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了用碱激发矿渣-粉煤灰材料修补普通混凝土对黏结面力学性能与抗氯离子渗透性能的影响。对比分析了用普通混凝土直接修补(方式C)、分别刷水泥净浆界面剂及碱激发矿渣-粉煤灰净浆界面剂后再用普通混凝土修补(方式J)、用碱激发矿渣-粉煤灰混凝土直接修补(方式S)三种方式修补后的黏结面的劈裂抗拉强度和氯离子扩散系数。结果表明:三种修补方式中,碱激发矿渣-粉煤灰混凝土直接修补(方式S)的效果最好,此时碱激发剂模数的合理取值为1.3。用方式S修补后的黏结面的劈裂抗拉强度与氯离子抗渗透性能的相关性较好,均随矿渣掺量的增加先增强后减弱,矿渣、粉煤灰掺量各50%时二者达到最强。用碱激发材料修补后,在碱激发剂作用下,碱激发矿渣-粉煤灰与老混凝土的部分组分发生水化反应,提升了黏结面的力学性能与抗氯离子渗透性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱红光
侯金良
石晶
葛洁雅
吕威
杨森
李宗徽
沈正艳
关键词:  混凝土修补  黏结面  碱激发矿渣-粉煤灰  劈裂抗拉强度  氯离子扩散系数    
Abstract: In this work, the effect of alkali-activated slag fly ash (AASFA) on the mechanical properties and chloride penetration resistance of concrete bonding surface was studied. The splitting tensile strength and the chloride ion diffusion coefficient of the bonding surface repaired through three methods are compared and analyzed, which are direct repairing with ordinary concrete (the method C), brushing the interface agent using cement or AASFA paste before repairing with ordinary concrete (the method J) and direct repairing with AASFA concrete (the method S). The results show that AASFA repairing concrete (the method S) with alkali activator modulus of 1.3 has the best effect among the three methods. There is a good correlation between the splitting tensile strength and the chloride penetration resistance of the bonding surface repaired through method S. The two properties are first enhanced, then weakened with the increase of slag content, and reach the strongest when the contents of slag and fly ash account for 50% respectively. After repairing with alkali activated material, under the action of alkali activator, the hydration pro-ducts of slag fly ash and old concrete cement influence each other to promote the reaction, and the generated material improves the mechanical properties and chloride ion penetration resistance of the bonding surface.
Key words:  concrete repairing    bonding surface    alkali-activated slag fly ash    splitting tensile strength    chloride ion diffusion coefficient
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TU528.59  
基金资助: 北京市自然科学基金(8164061);国家自然科学基金(51578539);中央高校基本科研业务费优秀青年项目(2020YQLJ03);中国矿业大学(北京)“越崎青年学者”项目(800015Z11A23)
通讯作者:  *zhg@cumtb.edu.cn   
作者简介:  朱红光,中国矿业大学(北京)副教授,越崎青年学者。2012年博士毕业于中国矿业大学(北京)工程力学专业并留校至今。在国内外学术期刊上发表论文50余篇,获8项国家发明及实用新型专利。主要从事固废混凝土的数字化设计与长期性能研究。主持和参与国家重大基础研发计划3项、国家自然科学基金2项、国家重点试验室开放课题3项等。
引用本文:    
朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
ZHU Hongguang, HOU Jinliang, SHI Jing, GE Jieya, LYU Wei, YANG Sen, LI Zonghui, SHEN Zhengyan. Bonding Properties of Interface in Ordinary Concrete Repaired by Alkali-Activated Material. Materials Reports, 2022, 36(16): 21030218-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030218  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21030218
1 Zanotti C, Banthia N, Plizzari G. Cement and Concrete Research, 2014, 63(9), 117.
2 Beushausen H, Höhlig B, Talotti M. Cement and Concrete Research, 2017, 92, 84.
3 Huang L K. Journal of Chongqing University of Technology (Natural Science), 2022, 36(2), 101(in Chinese).
黄兰可. 重庆理工大学学报(自然科学), 2022, 36(2), 101.
4 Bonaldo E, Barros J A O, Lourenço P B. International Journal of Adhesion and Adhesives, 2005, 25(6), 463.
5 Santos D S, Santos P M D, Dias-Da-Costa D. Construction and Building Materials, 2012, 37, 102.
6 Santos P M D, Julio E N B S. Materials Journal, 2011, 108(4), 449.
7 Zailani W, Abdullah M, Arshad M F, et al. Materials,2020,14(1),56.
8 Komnitsas K A. Procedia Engineering, 2011, 21(3), 1023.
9 Singh B, Ishwarya G, Gupta M, et al. Construction and Building Mate-rials, 2015, 85, 78.
10 Puligilla S, Mondal P. Cement and Concrete Research, 2013, 43, 70.
11 Lee W K W, van Deventer J S J. Cement and Concrete Research, 2004, 34(2),195.
12 Song W L, Zhu Z D, Pu S Y, et al. Materials Reports B: Research Papes, 2020,34(11),22070(in Chinese).
宋维龙,朱志铎,浦少云,等.材料导报:研究篇,2020,34(11),22070.
13 Chen L, Pan R Y, Shen X D, et al. Journal of Building Materials, 2010, 13(3), 380(in Chinese).
陈琳,潘如意,沈晓冬,等.建筑材料学报, 2010, 13(3), 380.
14 Kumar S, Kumar R, Mehrotra S P. Journal of Materials Science, 2010, 45(3), 607.
15 Puligilla S, Mondal P. Cement and Concrete Research,2013,43(1),70.
16 Zhou W L. Study on performance and compound method of concrete ad-ded with fly ash and/or slag. Ph.D. Thesis, Wuhan University, China, 2013(in Chinese).
周万良. 掺粉煤灰、矿渣混凝土的性能及配制方法研究.博士学位论文,武汉大学, 2013.
17 Ismail I, Bernal S A, Provis J L, et al. Construction and Building Materials, 2013, 48, 1187.
18 Espeche A D, León J. Construction and Building Materials, 2011, 25(3), 1222.
19 Qian Y, Zhang D, Ueda T. Journal of Advanced Concrete Technology, 2016, 14(8), 421.
20 Sfa B, Hxa B, Rz C, et al. Construction and Building Materials, 2020, 250, 118830.
21 Lee N K, Lee H K. Cement and Concrete Composites, 2016, 72, 168.
22 Maria C, Willian A, Isabel S. Materials, 2016, 9(3), 158.
23 Zhang J, Shi C, Zhang Z. Construction and Building Materials, 2019, 226, 21.
[1] 严金生, 周洲, 张庆年, 施韬, 周威杰, 胡卓君. 不同温度煅烧凹凸棒土的水化活性[J]. 材料导报, 2021, 35(z2): 248-253.
[2] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[3] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed